論文の概要: LVBench: An Extreme Long Video Understanding Benchmark
- arxiv url: http://arxiv.org/abs/2406.08035v2
- Date: Wed, 23 Oct 2024 06:37:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-24 13:53:43.392607
- Title: LVBench: An Extreme Long Video Understanding Benchmark
- Title(参考訳): LVBench:極端に長いビデオ理解ベンチマーク
- Authors: Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang, Bin Xu, Yuxiao Dong, Ming Ding, Jie Tang,
- Abstract要約: LVBenchは長いビデオの理解に特化して設計されたベンチマークである。
我々のデータセットは、公開されているビデオからなり、長いビデオの理解と情報抽出を目的とした様々なタスクを包含する。
- 参考スコア(独自算出の注目度): 38.839913137854104
- License:
- Abstract: Recent progress in multimodal large language models has markedly enhanced the understanding of short videos (typically under one minute), and several evaluation datasets have emerged accordingly. However, these advancements fall short of meeting the demands of real-world applications such as embodied intelligence for long-term decision-making, in-depth movie reviews and discussions, and live sports commentary, all of which require comprehension of long videos spanning several hours. To address this gap, we introduce LVBench, a benchmark specifically designed for long video understanding. Our dataset comprises publicly sourced videos and encompasses a diverse set of tasks aimed at long video comprehension and information extraction. LVBench is designed to challenge multimodal models to demonstrate long-term memory and extended comprehension capabilities. Our extensive evaluations reveal that current multimodal models still underperform on these demanding long video understanding tasks. Through LVBench, we aim to spur the development of more advanced models capable of tackling the complexities of long video comprehension. Our data and code are publicly available at: https://lvbench.github.io.
- Abstract(参考訳): マルチモーダルな大言語モデルの最近の進歩は、ショートビデオ(典型的には1分以内)の理解を著しく向上させ、その結果、いくつかの評価データセットが出現した。
しかし、これらの進歩は、長期的な意思決定のための具体的インテリジェンス、詳細な映画レビューや議論、ライブスポーツ解説といった現実的な応用の要求を満たすには足りていない。
このギャップに対処するために、長いビデオ理解に特化したベンチマークであるLVBenchを紹介する。
我々のデータセットは、公開されているビデオからなり、長いビデオの理解と情報抽出を目的とした様々なタスクを包含する。
LVBenchは、長期記憶と拡張理解能力を実証するために、マルチモーダルモデルに挑戦するように設計されている。
我々の広範な評価により、現在のマルチモーダルモデルは、これらの要求の長いビデオ理解タスクにおいて、まだ性能が劣っていることが明らかとなった。
LVBenchを通じて、長いビデオ理解の複雑さに対処できる、より高度なモデルの開発を促進することを目的としている。
私たちのデータとコードは、https://lvbench.github.io.comで公開されています。
関連論文リスト
- HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding [52.696422425058245]
我々は、長時間ビデオ理解モデルを評価するために、大規模な時間長ビデオベンチマークHLV-1Kを構築した。
HLV-1Kは、高品質質問応答(QA)とマルチチョイス質問応答(MCQA)を備えた1009時間ビデオからなる。
我々は,既存の最先端手法を用いてベンチマークを評価し,様々なレベルでの深層ビデオ理解能力をテストすることの価値を実証した。
論文 参考訳(メタデータ) (2025-01-03T05:32:37Z) - VideoChat-Flash: Hierarchical Compression for Long-Context Video Modeling [43.485687038460895]
本稿では,高忠実度表現のための階層型ビジュアルトークン圧縮(HiCo)手法を提案する。
HiCoは、長いビデオにおける視覚情報の冗長性を利用して、クリップレベルからビデオレベルまで、長いビデオコンテキストを圧縮する。
VideoChat-Flashは、2Bと7Bのモデルスケールで、メインストリームのビデオベンチマークとショートビデオベンチマークの両方で主要なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-12-31T18:01:23Z) - SALOVA: Segment-Augmented Long Video Assistant for Targeted Retrieval and Routing in Long-Form Video Analysis [52.050036778325094]
本稿では,SALOVA: Segment-Augmented Video Assistantを紹介する。
87.8Kビデオの高品質なコレクションをセグメントレベルで高密度にキャプションし、シーンの連続性を捕捉し、リッチなコンテキストを維持する。
本フレームワークは,クエリに応答して,関連ビデオセグメントの正確な識別と検索を可能にすることで,現在のビデオLMMの限界を緩和する。
論文 参考訳(メタデータ) (2024-11-25T08:04:47Z) - LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding [41.9477837230283]
LongVideoBenchは質問に答えるベンチマークで、最大1時間までビデオ言語によるインターリーブされたインプットを特徴としている。
私たちのベンチマークには、さまざまなテーマにまたがるサブタイトルを持つ3,763種類のウェブコレクトビデオが含まれています。
我々は、推論を参照する新しいビデオ質問応答タスクを定式化する。
論文 参考訳(メタデータ) (2024-07-22T16:00:55Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
ビデオ理解はマルチモーダル大言語モデル(LMLM)にとって重要な次のステップである
合成ビデオ生成によるベンチマーク構築フレームワークであるVideoNIAH(Video Needle In A Haystack)を提案する。
我々は、プロプライエタリモデルとオープンソースモデルの両方を包括的に評価し、ビデオ理解能力の重大な違いを明らかにする。
論文 参考訳(メタデータ) (2024-06-13T17:50:05Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
本研究は,長期的映像理解のための効率的かつ効果的なモデルの設計に焦点を当てる。
我々は,過去の映像情報をメモリバンクに格納し,オンラインで動画を処理することを提案する。
我々のモデルは、複数のデータセットにわたって最先端のパフォーマンスを達成することができる。
論文 参考訳(メタデータ) (2024-04-08T17:59:24Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLMはビデオ理解のためのシンプルだが強力なビデオLLMである。
ローカル情報とグローバル情報の両方を含むビデオ表現をエンコードする。
我々のモデルは、長いビデオ理解のためのより正確な応答を生成する。
論文 参考訳(メタデータ) (2024-04-04T11:33:29Z) - MoVQA: A Benchmark of Versatile Question-Answering for Long-Form Movie
Understanding [69.04413943858584]
長文映画の質問応答データセットであるMoVQAを紹介する。
マルチモーダルシステムの多様な認知能力を評価するためのベンチマークも行った。
論文 参考訳(メタデータ) (2023-12-08T03:33:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。