LVBench: An Extreme Long Video Understanding Benchmark
- URL: http://arxiv.org/abs/2406.08035v2
- Date: Wed, 23 Oct 2024 06:37:01 GMT
- Title: LVBench: An Extreme Long Video Understanding Benchmark
- Authors: Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang, Bin Xu, Yuxiao Dong, Ming Ding, Jie Tang,
- Abstract summary: We introduce LVBench, a benchmark specifically designed for long video understanding.
Our dataset comprises publicly sourced videos and encompasses a diverse set of tasks aimed at long video comprehension and information extraction.
- Score: 38.839913137854104
- License:
- Abstract: Recent progress in multimodal large language models has markedly enhanced the understanding of short videos (typically under one minute), and several evaluation datasets have emerged accordingly. However, these advancements fall short of meeting the demands of real-world applications such as embodied intelligence for long-term decision-making, in-depth movie reviews and discussions, and live sports commentary, all of which require comprehension of long videos spanning several hours. To address this gap, we introduce LVBench, a benchmark specifically designed for long video understanding. Our dataset comprises publicly sourced videos and encompasses a diverse set of tasks aimed at long video comprehension and information extraction. LVBench is designed to challenge multimodal models to demonstrate long-term memory and extended comprehension capabilities. Our extensive evaluations reveal that current multimodal models still underperform on these demanding long video understanding tasks. Through LVBench, we aim to spur the development of more advanced models capable of tackling the complexities of long video comprehension. Our data and code are publicly available at: https://lvbench.github.io.
Related papers
- LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding [41.9477837230283]
LongVideoBench is a question-answering benchmark that features video-language interleaved inputs up to an hour long.
Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes.
We formulate a novel video question-answering task termed referring reasoning.
arXiv Detail & Related papers (2024-07-22T16:00:55Z) - Long Context Transfer from Language to Vision [74.78422371545716]
Video sequences offer valuable temporal information, but existing large multimodal models (LMMs) fall short in understanding extremely long videos.
In this paper, we approach this problem from the perspective of the language model.
By simply extrapolating the context length of the language backbone, we enable LMMs to comprehend orders of magnitude more visual tokens without any video training.
arXiv Detail & Related papers (2024-06-24T17:58:06Z) - MMBench-Video: A Long-Form Multi-Shot Benchmark for Holistic Video Understanding [67.56182262082729]
We introduce MMBench-Video, a quantitative benchmark to rigorously evaluate large vision-language models (LVLMs) in video understanding.
MMBench-Video incorporates lengthy videos from YouTube and employs free-form questions, mirroring practical use cases.
The benchmark is meticulously crafted to probe the models' temporal reasoning skills, with all questions human-annotated according to a carefully constructed ability taxonomy.
arXiv Detail & Related papers (2024-06-20T17:26:01Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - MA-LMM: Memory-Augmented Large Multimodal Model for Long-Term Video Understanding [66.56100008577134]
This study focuses on designing an efficient and effective model for long-term video understanding.
We propose to process videos in an online manner and store past video information in a memory bank.
Our model can achieve state-of-the-art performances across multiple datasets.
arXiv Detail & Related papers (2024-04-08T17:59:24Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - Understanding Long Videos in One Multimodal Language Model Pass [44.78900245769057]
Large Language Models (LLMs) are known to contain a strong awareness of world knowledge.
We propose Likelihood Selection, a technique that unlocks faster inference in autoregressive LLMs.
Our resulting Multimodal Video Understanding framework demonstrates state-of-the-art performance across long-video and fine-grained action recognition benchmarks.
arXiv Detail & Related papers (2024-03-25T17:59:09Z) - MoVQA: A Benchmark of Versatile Question-Answering for Long-Form Movie
Understanding [69.04413943858584]
We introduce MoVQA, a long-form movie question-answering dataset.
We also benchmark to assess the diverse cognitive capabilities of multimodal systems.
arXiv Detail & Related papers (2023-12-08T03:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.