LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding
- URL: http://arxiv.org/abs/2407.15754v1
- Date: Mon, 22 Jul 2024 16:00:55 GMT
- Title: LongVideoBench: A Benchmark for Long-context Interleaved Video-Language Understanding
- Authors: Haoning Wu, Dongxu Li, Bei Chen, Junnan Li,
- Abstract summary: LongVideoBench is a question-answering benchmark that features video-language interleaved inputs up to an hour long.
Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes.
We formulate a novel video question-answering task termed referring reasoning.
- Score: 41.9477837230283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large multimodal models (LMMs) are processing increasingly longer and richer inputs. Albeit the progress, few public benchmark is available to measure such development. To mitigate this gap, we introduce LongVideoBench, a question-answering benchmark that features video-language interleaved inputs up to an hour long. Our benchmark includes 3,763 varying-length web-collected videos with their subtitles across diverse themes, designed to comprehensively evaluate LMMs on long-term multimodal understanding. To achieve this, we interpret the primary challenge as to accurately retrieve and reason over detailed multimodal information from long inputs. As such, we formulate a novel video question-answering task termed referring reasoning. Specifically, as part of the question, it contains a referring query that references related video contexts, called referred context. The model is then required to reason over relevant video details from the referred context. Following the paradigm of referring reasoning, we curate 6,678 human-annotated multiple-choice questions in 17 fine-grained categories, establishing one of the most comprehensive benchmarks for long-form video understanding. Evaluations suggest that the LongVideoBench presents significant challenges even for the most advanced proprietary models (e.g. GPT-4o, Gemini-1.5-Pro, GPT-4-Turbo), while their open-source counterparts show an even larger performance gap. In addition, our results indicate that model performance on the benchmark improves only when they are capable of processing more frames, positioning LongVideoBench as a valuable benchmark for evaluating future-generation long-context LMMs.
Related papers
- SVBench: A Benchmark with Temporal Multi-Turn Dialogues for Streaming Video Understanding [56.78088668917983]
We introduce SVBench, a pioneering benchmark with temporal multi-turn question-answering chains.
We design a semi-automated annotation pipeline to obtain 49,979 Question-Answer (QA) pairs of 1,353 streaming videos.
Our experimental results, obtained from 14 models in dialogue and streaming evaluations, reveal that while the closed-source GPT-4o outperforms others, most open-source LVLMs struggle with long-context streaming video understanding.
arXiv Detail & Related papers (2025-02-15T14:29:44Z) - HLV-1K: A Large-scale Hour-Long Video Benchmark for Time-Specific Long Video Understanding [52.696422425058245]
We build a large-scale hour-long long video benchmark, HLV-1K, designed to evaluate long video understanding models.
HLV-1K comprises 1009 hour-long videos with 14,847 high-quality question answering (QA) and multi-choice question asnwering (MCQA)
We evaluate our benchmark using existing state-of-the-art methods and demonstrate its value for testing deep long video understanding capabilities at different levels and for various tasks.
arXiv Detail & Related papers (2025-01-03T05:32:37Z) - CG-Bench: Clue-grounded Question Answering Benchmark for Long Video Understanding [43.858197893052115]
CG-Bench is a novel benchmark for clue-grounded question answering in long videos.
It features 1,219 manually curated videos categorized by a granular system with 14 primary categories, 171 secondary categories, and 638 tertiary categories.
The benchmark includes 12,129 QA pairs in three major question types: perception, reasoning, and hallucination.
arXiv Detail & Related papers (2024-12-16T18:46:45Z) - Visual Context Window Extension: A New Perspective for Long Video Understanding [45.134271969594614]
We tackle the challenge of long video understanding from the perspective of context windows.
We propose to adapt LMMs for long video understanding tasks by extending the visual context window.
Our method consistently improves the performance as the number of video frames increases.
arXiv Detail & Related papers (2024-09-30T07:25:16Z) - Goldfish: Vision-Language Understanding of Arbitrarily Long Videos [51.547065479762715]
We present a methodology tailored for comprehending videos of arbitrary lengths.
We also introduce the TVQA-long benchmark, designed to evaluate models' capabilities in understanding long videos with questions in both vision and text content.
Our results indicate that our models have significant improvements in both long and short-video understanding.
arXiv Detail & Related papers (2024-07-17T15:59:32Z) - Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
Video understanding is a crucial next step for multimodal large language models (LMLMs)
We propose VideoNIAH (Video Needle In A Haystack), a benchmark construction framework through synthetic video generation.
We conduct a comprehensive evaluation of both proprietary and open-source models, uncovering significant differences in their video understanding capabilities.
arXiv Detail & Related papers (2024-06-13T17:50:05Z) - LVBench: An Extreme Long Video Understanding Benchmark [38.839913137854104]
We introduce LVBench, a benchmark specifically designed for long video understanding.
Our dataset comprises publicly sourced videos and encompasses a diverse set of tasks aimed at long video comprehension and information extraction.
arXiv Detail & Related papers (2024-06-12T09:36:52Z) - LongVLM: Efficient Long Video Understanding via Large Language Models [55.813206751150716]
LongVLM is a simple yet powerful VideoLLM for long video understanding.
We encode video representations that incorporate both local and global information.
Our model produces more precise responses for long video understanding.
arXiv Detail & Related papers (2024-04-04T11:33:29Z) - MoVQA: A Benchmark of Versatile Question-Answering for Long-Form Movie
Understanding [69.04413943858584]
We introduce MoVQA, a long-form movie question-answering dataset.
We also benchmark to assess the diverse cognitive capabilities of multimodal systems.
arXiv Detail & Related papers (2023-12-08T03:33:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.