Efficient Network Traffic Feature Sets for IoT Intrusion Detection
- URL: http://arxiv.org/abs/2406.08042v1
- Date: Wed, 12 Jun 2024 09:51:29 GMT
- Title: Efficient Network Traffic Feature Sets for IoT Intrusion Detection
- Authors: Miguel Silva, João Vitorino, Eva Maia, Isabel Praça,
- Abstract summary: This work evaluates the feature sets provided by a combination of different feature selection methods, namely Information Gain, Chi-Squared Test, Recursive Feature Elimination, Mean Absolute Deviation, and Dispersion Ratio, in multiple IoT network datasets.
The influence of the smaller feature sets on both the classification performance and the training time of ML models is compared, with the aim of increasing the computational efficiency of IoT intrusion detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The use of Machine Learning (ML) models in cybersecurity solutions requires high-quality data that is stripped of redundant, missing, and noisy information. By selecting the most relevant features, data integrity and model efficiency can be significantly improved. This work evaluates the feature sets provided by a combination of different feature selection methods, namely Information Gain, Chi-Squared Test, Recursive Feature Elimination, Mean Absolute Deviation, and Dispersion Ratio, in multiple IoT network datasets. The influence of the smaller feature sets on both the classification performance and the training time of ML models is compared, with the aim of increasing the computational efficiency of IoT intrusion detection. Overall, the most impactful features of each dataset were identified, and the ML models obtained higher computational efficiency while preserving a good generalization, showing little to no difference between the sets.
Related papers
- Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection [0.0]
This work presents a feature selection and consensus process that combines multiple methods and applies them to several network datasets.
By using an improved dataset with more data diversity, selecting the best time-related features and a more specific feature set, and performing adversarial training, the ML models were able to achieve a better adversarially robust generalization.
arXiv Detail & Related papers (2024-04-05T16:01:21Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Deep Negative Correlation Classification [82.45045814842595]
Existing deep ensemble methods naively train many different models and then aggregate their predictions.
We propose deep negative correlation classification (DNCC)
DNCC yields a deep classification ensemble where the individual estimator is both accurate and negatively correlated.
arXiv Detail & Related papers (2022-12-14T07:35:20Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-distribution (OOD) detection has recently received much attention from the machine learning community due to its importance in deploying machine learning models in real-world applications.
In this paper we propose an uncertainty quantification approach by modelling the distribution of features.
We incorporate an efficient ensemble mechanism, namely batch-ensemble, to construct the batch-ensemble neural networks (BE-SNNs) and overcome the feature collapse problem.
We show that BE-SNNs yield superior performance on several OOD benchmarks, such as the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM
arXiv Detail & Related papers (2022-06-26T16:00:22Z) - Feature Analysis for ML-based IIoT Intrusion Detection [0.0]
Powerful Machine Learning models have been adopted to implement Network Intrusion Detection Systems (NIDSs)
It is important to select the right set of data features, which maximise the detection accuracy as well as computational efficiency.
This paper provides an extensive analysis of the optimal feature sets in terms of the importance and predictive power of network attacks.
arXiv Detail & Related papers (2021-08-29T02:19:37Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
Machine Learning (ML)-based network intrusion detection systems bring many benefits for enhancing the security posture of an organisation.
Many systems have been designed and developed in the research community, often achieving a perfect detection rate when evaluated using certain datasets.
This paper tightens the gap by evaluating the generalisability of a common feature set to different network environments and attack types.
arXiv Detail & Related papers (2021-04-15T00:44:45Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Multi-Stage Optimized Machine Learning Framework for Network Intrusion
Detection [8.26773636337474]
This paper proposes a novel multi-stage optimized ML-based NIDS framework.
It reduces computational complexity while maintaining its detection performance.
The proposed framework significantly reduces the required training sample size (up to 74%) and feature set size (up to 50%)
arXiv Detail & Related papers (2020-08-09T03:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.