Classical simulability of constant-depth linear-optical circuits with noise
- URL: http://arxiv.org/abs/2406.08086v1
- Date: Wed, 12 Jun 2024 11:08:57 GMT
- Title: Classical simulability of constant-depth linear-optical circuits with noise
- Authors: Changhun Oh,
- Abstract summary: Noise is one of the main obstacles to realizing quantum devices that achieve a quantum computational advantage.
In this work, we investigate the complexity of shallow-depth linear-optical circuits under the effects of photon loss and partial distinguishability.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Noise is one of the main obstacles to realizing quantum devices that achieve a quantum computational advantage. A possible approach to minimize the noise effect is to employ shallow-depth quantum circuits since noise typically accumulates as circuit depth grows. In this work, we investigate the complexity of shallow-depth linear-optical circuits under the effects of photon loss and partial distinguishability. By establishing a correspondence between a linear-optical circuit and a bipartite graph, we show that the effects of photon loss and partial distinguishability are equivalent to removing the corresponding vertices. Using this correspondence and percolation theory, we prove that for constant-depth linear-optical circuits with single photons, there is a threshold of loss (noise) rate above which the linear-optical systems can be decomposed into smaller systems with high probability, which enables us to simulate the systems efficiently. Consequently, our result implies that even in shallow-depth circuits where noise is not accumulated enough, its effect may be sufficiently significant to make them efficiently simulable using classical algorithms due to its entanglement structure constituted by shallow-depth circuits.
Related papers
- Mitigating photon loss in linear optical quantum circuits: classical postprocessing methods outperforming postselection [0.0]
We present a family of techniques to mitigate the effects of photon loss on both output probabilities and expectation values.
Recycled probabilities are constructed from output statistics affected by loss.
Classical postprocessing techniques then take recycled probabilities as input and output a set of loss-mitigated probabilities.
arXiv Detail & Related papers (2024-05-03T17:53:15Z) - Demonstration of Lossy Linear Transformations and Two-Photon Interference on a Photonic Chip [78.1768579844556]
We show that engineered loss, using an auxiliary waveguide, allows one to invert the spatial statistics from bunching to antibunching.
We study the photon statistics within the loss-emulating channel and observe photon coincidences, which may provide insights into the design of quantum photonic integrated chips.
arXiv Detail & Related papers (2024-04-09T06:45:46Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Reconfigurable quantum photonic circuits based on quantum dots [0.0]
We show that quantum dots can be used as reconfigurable phase shifters in quantum photonic circuits.
These findings pave the way for cryogenically-compatible, fast, and low-loss reconfigurable quantum photonic circuits.
arXiv Detail & Related papers (2023-12-16T18:53:30Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Fault-tolerant quantum computation with static linear optics [0.0]
In this work we propose a topologically error-corrected architecture that does away with these elements at no cost.
Our computer consists of three modules: a 2D array of probabilistic sources of GKP states; a depth-four circuit of static beamsplitters, phase shifters, and single-time-step delay lines.
The symmetry of our proposed circuit allows us to combine the effects of finite squeezing and uniform photon loss within the noise model, resulting in more comprehensive threshold estimates.
arXiv Detail & Related papers (2021-04-07T16:43:34Z) - Classical simulation of bosonic linear-optical random circuits beyond
linear light cone [2.5496329090462626]
We examine classical simulability of sampling from the output photon-number distribution of linear-optical circuits.
We show that the algorithms' error is exponentially small up to a depth less than quadratic in the distance between sources.
arXiv Detail & Related papers (2021-02-19T18:33:31Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z) - Efficient sampling from shallow Gaussian quantum-optical circuits with
local interactions [0.9786690381850354]
We prove that a classical computer can efficiently sample from the photon-number probability distribution of a Gaussian state prepared by using an optical circuit that is shallow and local.
Since sampling from deep optical circuits with exponential-scaling photon loss is classically simulable, our results pose a challenge to the feasibility of demonstrating quantum supremacy on photonic platforms with local interactions.
arXiv Detail & Related papers (2020-09-24T17:10:42Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.