One-Step Effective Diffusion Network for Real-World Image Super-Resolution
- URL: http://arxiv.org/abs/2406.08177v3
- Date: Thu, 24 Oct 2024 12:32:10 GMT
- Title: One-Step Effective Diffusion Network for Real-World Image Super-Resolution
- Authors: Rongyuan Wu, Lingchen Sun, Zhiyuan Ma, Lei Zhang,
- Abstract summary: We propose a one-step effective diffusion network, namely OSEDiff, for the Real-ISR problem.
We finetune the pre-trained diffusion network with trainable layers to adapt it to complex image degradations.
Our OSEDiff model can efficiently and effectively generate HQ images in just one diffusion step.
- Score: 11.326598938246558
- License:
- Abstract: The pre-trained text-to-image diffusion models have been increasingly employed to tackle the real-world image super-resolution (Real-ISR) problem due to their powerful generative image priors. Most of the existing methods start from random noise to reconstruct the high-quality (HQ) image under the guidance of the given low-quality (LQ) image. While promising results have been achieved, such Real-ISR methods require multiple diffusion steps to reproduce the HQ image, increasing the computational cost. Meanwhile, the random noise introduces uncertainty in the output, which is unfriendly to image restoration tasks. To address these issues, we propose a one-step effective diffusion network, namely OSEDiff, for the Real-ISR problem. We argue that the LQ image contains rich information to restore its HQ counterpart, and hence the given LQ image can be directly taken as the starting point for diffusion, eliminating the uncertainty introduced by random noise sampling. We finetune the pre-trained diffusion network with trainable layers to adapt it to complex image degradations. To ensure that the one-step diffusion model could yield HQ Real-ISR output, we apply variational score distillation in the latent space to conduct KL-divergence regularization. As a result, our OSEDiff model can efficiently and effectively generate HQ images in just one diffusion step. Our experiments demonstrate that OSEDiff achieves comparable or even better Real-ISR results, in terms of both objective metrics and subjective evaluations, than previous diffusion model-based Real-ISR methods that require dozens or hundreds of steps. The source codes are released at https://github.com/cswry/OSEDiff.
Related papers
- Adversarial Diffusion Compression for Real-World Image Super-Resolution [16.496532580598007]
Real-world image super-resolution aims to reconstruct high-resolution images from low-resolution inputs degraded by complex processes.
One-step diffusion networks like OSEDiff and S3Diff alleviate this issue but still incur high computational costs.
This paper proposes a novel Real-ISR method, AdcSR, by distilling the one-step diffusion network OSEDiff into a streamlined diffusion-GAN model.
arXiv Detail & Related papers (2024-11-20T15:13:36Z) - ConsisSR: Delving Deep into Consistency in Diffusion-based Image Super-Resolution [28.945663118445037]
Real-world image super-resolution (Real-ISR) aims at restoring high-quality (HQ) images from low-quality (LQ) inputs corrupted by unknown and complex degradations.
We introduce ConsisSR to handle both semantic and pixel-level consistency.
arXiv Detail & Related papers (2024-10-17T17:41:52Z) - One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called One-Step Image Rescaling Diffusion (OSIRDiff) for extreme image rescaling.
OSIRDiff performs rescaling operations in the latent space of a pre-trained autoencoder.
It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations.
We propose an Iterative Token Evaluation and Refinement framework for RWSR.
We show that ITER is easier to train than Generative Adversarial Networks (GANs) and more efficient than continuous diffusion models.
arXiv Detail & Related papers (2023-12-09T17:07:32Z) - SinSR: Diffusion-Based Image Super-Resolution in a Single Step [119.18813219518042]
Super-resolution (SR) methods based on diffusion models exhibit promising results.
But their practical application is hindered by the substantial number of required inference steps.
We propose a simple yet effective method for achieving single-step SR generation, named SinSR.
arXiv Detail & Related papers (2023-11-23T16:21:29Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
Diffusion model-based image restoration (IR) aims to use diffusion models to recover high-quality (HQ) images from degraded images, achieving promising performance.
Most existing methods need long serial sampling chains to restore HQ images step-by-step, resulting in expensive sampling time and high computation costs.
In this work, we aim to rethink the diffusion model-based IR models through a different perspective, i.e., a deep equilibrium (DEQ) fixed point system, called DeqIR.
arXiv Detail & Related papers (2023-11-20T08:27:56Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.