Hierarchical Integration Diffusion Model for Realistic Image Deblurring
- URL: http://arxiv.org/abs/2305.12966v4
- Date: Mon, 25 Sep 2023 16:40:31 GMT
- Title: Hierarchical Integration Diffusion Model for Realistic Image Deblurring
- Authors: Zheng Chen, Yulun Zhang, Ding Liu, Bin Xia, Jinjin Gu, Linghe Kong,
Xin Yuan
- Abstract summary: Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
- Score: 71.76410266003917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models (DMs) have recently been introduced in image deblurring and
exhibited promising performance, particularly in terms of details
reconstruction. However, the diffusion model requires a large number of
inference iterations to recover the clean image from pure Gaussian noise, which
consumes massive computational resources. Moreover, the distribution
synthesized by the diffusion model is often misaligned with the target results,
leading to restrictions in distortion-based metrics. To address the above
issues, we propose the Hierarchical Integration Diffusion Model (HI-Diff), for
realistic image deblurring. Specifically, we perform the DM in a highly
compacted latent space to generate the prior feature for the deblurring
process. The deblurring process is implemented by a regression-based method to
obtain better distortion accuracy. Meanwhile, the highly compact latent space
ensures the efficiency of the DM. Furthermore, we design the hierarchical
integration module to fuse the prior into the regression-based model from
multiple scales, enabling better generalization in complex blurry scenarios.
Comprehensive experiments on synthetic and real-world blur datasets demonstrate
that our HI-Diff outperforms state-of-the-art methods. Code and trained models
are available at https://github.com/zhengchen1999/HI-Diff.
Related papers
- Towards Model-Agnostic Dataset Condensation by Heterogeneous Models [13.170099297210372]
We develop a novel method to produce universally applicable condensed images through cross-model interactions.
By balancing the contribution of each model and maintaining their semantic meaning closely, our approach overcomes the limitations associated with model-specific condensed images.
arXiv Detail & Related papers (2024-09-22T17:13:07Z) - Distilling Diffusion Models into Conditional GANs [90.76040478677609]
We distill a complex multistep diffusion model into a single-step conditional GAN student model.
For efficient regression loss, we propose E-LatentLPIPS, a perceptual loss operating directly in diffusion model's latent space.
We demonstrate that our one-step generator outperforms cutting-edge one-step diffusion distillation models.
arXiv Detail & Related papers (2024-05-09T17:59:40Z) - BlindDiff: Empowering Degradation Modelling in Diffusion Models for Blind Image Super-Resolution [52.47005445345593]
BlindDiff is a DM-based blind SR method to tackle the blind degradation settings in SISR.
BlindDiff seamlessly integrates the MAP-based optimization into DMs.
Experiments on both synthetic and real-world datasets show that BlindDiff achieves the state-of-the-art performance.
arXiv Detail & Related papers (2024-03-15T11:21:34Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z) - Implicit Diffusion Models for Continuous Super-Resolution [65.45848137914592]
This paper introduces an Implicit Diffusion Model (IDM) for high-fidelity continuous image super-resolution.
IDM integrates an implicit neural representation and a denoising diffusion model in a unified end-to-end framework.
The scaling factor regulates the resolution and accordingly modulates the proportion of the LR information and generated features in the final output.
arXiv Detail & Related papers (2023-03-29T07:02:20Z) - Information-Theoretic Diffusion [18.356162596599436]
Denoising diffusion models have spurred significant gains in density modeling and image generation.
We introduce a new mathematical foundation for diffusion models inspired by classic results in information theory.
arXiv Detail & Related papers (2023-02-07T23:03:07Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - Normalizing Flows with Multi-Scale Autoregressive Priors [131.895570212956]
We introduce channel-wise dependencies in their latent space through multi-scale autoregressive priors (mAR)
Our mAR prior for models with split coupling flow layers (mAR-SCF) can better capture dependencies in complex multimodal data.
We show that mAR-SCF allows for improved image generation quality, with gains in FID and Inception scores compared to state-of-the-art flow-based models.
arXiv Detail & Related papers (2020-04-08T09:07:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.