Transformer-based Model for ASR N-Best Rescoring and Rewriting
- URL: http://arxiv.org/abs/2406.08207v1
- Date: Wed, 12 Jun 2024 13:39:44 GMT
- Title: Transformer-based Model for ASR N-Best Rescoring and Rewriting
- Authors: Iwen E. Kang, Christophe Van Gysel, Man-Hung Siu,
- Abstract summary: We propose a novel Transformer based model capable of rescoring and rewriting, by exploring full context of the N-best hypotheses in parallel.
We show that our Rescore+Rewrite model outperforms the Rescore-only baseline, and achieves up to an average 8.6% relative Word Error Rate (WER) reduction over the ASR system by itself.
- Score: 4.906869033128613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Voice assistants increasingly use on-device Automatic Speech Recognition (ASR) to ensure speed and privacy. However, due to resource constraints on the device, queries pertaining to complex information domains often require further processing by a search engine. For such applications, we propose a novel Transformer based model capable of rescoring and rewriting, by exploring full context of the N-best hypotheses in parallel. We also propose a new discriminative sequence training objective that can work well for both rescore and rewrite tasks. We show that our Rescore+Rewrite model outperforms the Rescore-only baseline, and achieves up to an average 8.6% relative Word Error Rate (WER) reduction over the ASR system by itself.
Related papers
- SFR-RAG: Towards Contextually Faithful LLMs [57.666165819196486]
Retrieval Augmented Generation (RAG) is a paradigm that integrates external contextual information with large language models (LLMs) to enhance factual accuracy and relevance.
We introduce SFR-RAG, a small LLM that is instruction-textual with an emphasis on context-grounded generation and hallucination.
We also present ConBench, a new evaluation framework compiling multiple popular and diverse RAG benchmarks.
arXiv Detail & Related papers (2024-09-16T01:08:18Z) - MaFeRw: Query Rewriting with Multi-Aspect Feedbacks for Retrieval-Augmented Large Language Models [34.39053202801489]
In a real-world RAG system, the current query often involves spoken ellipses and ambiguous references from dialogue contexts.
We propose a novel query rewriting method MaFeRw, which improves RAG performance by integrating multi-aspect feedback from both the retrieval process and generated results.
Experimental results on two conversational RAG datasets demonstrate that MaFeRw achieves superior generation metrics and more stable training compared to baselines.
arXiv Detail & Related papers (2024-08-30T07:57:30Z) - Adaptive Query Rewriting: Aligning Rewriters through Marginal Probability of Conversational Answers [66.55612528039894]
AdaQR is a framework for training query rewriting models with limited rewrite annotations from seed datasets and completely no passage label.
A novel approach is proposed to assess retriever's preference for these candidates by the probability of answers conditioned on the conversational query.
arXiv Detail & Related papers (2024-06-16T16:09:05Z) - RaFe: Ranking Feedback Improves Query Rewriting for RAG [83.24385658573198]
We propose a framework for training query rewriting models free of annotations.
By leveraging a publicly available reranker, oursprovides feedback aligned well with the rewriting objectives.
arXiv Detail & Related papers (2024-05-23T11:00:19Z) - FastCorrect: Fast Error Correction with Edit Alignment for Automatic
Speech Recognition [90.34177266618143]
We propose FastCorrect, a novel NAR error correction model based on edit alignment.
FastCorrect speeds up the inference by 6-9 times and maintains the accuracy (8-14% WER reduction) compared with the autoregressive correction model.
It outperforms the accuracy of popular NAR models adopted in neural machine translation by a large margin.
arXiv Detail & Related papers (2021-05-09T05:35:36Z) - Transformer-based ASR Incorporating Time-reduction Layer and Fine-tuning
with Self-Knowledge Distillation [11.52842516726486]
We propose a Transformer-based ASR model with the time reduction layer, in which we incorporate time reduction layer inside transformer encoder layers.
We also introduce a fine-tuning approach for pre-trained ASR models using self-knowledge distillation (S-KD) which further improves the performance of our ASR model.
With language model (LM) fusion, we achieve new state-of-the-art word error rate (WER) results for Transformer-based ASR models.
arXiv Detail & Related papers (2021-03-17T21:02:36Z) - Pattern-aware Data Augmentation for Query Rewriting in Voice Assistant
Systems [10.332550622090718]
We propose an augmentation framework that learns patterns from existing training pairs and generates rewrite candidates from rewrite labels inversely to compensate for insufficient QR training data.
Our experimental results show its effectiveness compared with a fully trained QR baseline and demonstrate its potential application in boosting the QR performance on low-resource domains or locales.
arXiv Detail & Related papers (2020-12-21T16:36:32Z) - Improving Readability for Automatic Speech Recognition Transcription [50.86019112545596]
We propose a novel NLP task called ASR post-processing for readability (APR)
APR aims to transform the noisy ASR output into a readable text for humans and downstream tasks while maintaining the semantic meaning of the speaker.
We compare fine-tuned models based on several open-sourced and adapted pre-trained models with the traditional pipeline method.
arXiv Detail & Related papers (2020-04-09T09:26:42Z) - Streaming automatic speech recognition with the transformer model [59.58318952000571]
We propose a transformer based end-to-end ASR system for streaming ASR.
We apply time-restricted self-attention for the encoder and triggered attention for the encoder-decoder attention mechanism.
Our proposed streaming transformer architecture achieves 2.8% and 7.2% WER for the "clean" and "other" test data of LibriSpeech.
arXiv Detail & Related papers (2020-01-08T18:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.