Expressivity and Generalization: Fragment-Biases for Molecular GNNs
- URL: http://arxiv.org/abs/2406.08210v2
- Date: Thu, 25 Jul 2024 12:23:26 GMT
- Title: Expressivity and Generalization: Fragment-Biases for Molecular GNNs
- Authors: Tom Wollschläger, Niklas Kemper, Leon Hetzel, Johanna Sommer, Stephan Günnemann,
- Abstract summary: We propose the Fragment-WL test, an extension to the well-known Weisfeiler & Leman test, which enables the theoretic analysis of fragment-biased GNNs.
We develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness.
We show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures.
- Score: 42.64483757766247
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although recent advances in higher-order Graph Neural Networks (GNNs) improve the theoretical expressiveness and molecular property predictive performance, they often fall short of the empirical performance of models that explicitly use fragment information as inductive bias. However, for these approaches, there exists no theoretic expressivity study. In this work, we propose the Fragment-WL test, an extension to the well-known Weisfeiler & Leman (WL) test, which enables the theoretic analysis of these fragment-biased GNNs. Building on the insights gained from the Fragment-WL test, we develop a new GNN architecture and a fragmentation with infinite vocabulary that significantly boosts expressiveness. We show the effectiveness of our model on synthetic and real-world data where we outperform all GNNs on Peptides and have 12% lower error than all GNNs on ZINC and 34% lower error than other fragment-biased models. Furthermore, we show that our model exhibits superior generalization capabilities compared to the latest transformer-based architectures, positioning it as a robust solution for a range of molecular modeling tasks.
Related papers
- Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - What Ails Generative Structure-based Drug Design: Too Little or Too Much Expressivity? [28.22384118354044]
Several generative models with elaborate training and sampling procedures have been proposed to accelerate structure-based drug design (SBDD)
We seek to better understand this phenomenon from both theoretical and empirical perspectives.
We establish the first such results for protein-ligand complexes.
A plausible counterview may attribute the underperformance of these models to their excessive parameterizations, inducing expressivity at the expense of generalization.
arXiv Detail & Related papers (2024-08-12T10:55:29Z) - Global Minima, Recoverability Thresholds, and Higher-Order Structure in
GNNS [0.0]
We analyze the performance of graph neural network (GNN) architectures from the perspective of random graph theory.
We show how both specific higher-order structures in synthetic data and the mix of empirical structures in real data have dramatic effects on GNN performance.
arXiv Detail & Related papers (2023-10-11T17:16:33Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Image-Like Graph Representations for Improved Molecular Property
Prediction [7.119677737397071]
We propose a new intrinsic molecular representation that bypasses the need for GNNs entirely, dubbed CubeMol.
Our fixed-dimensional representation, when paired with a transformer model, exceeds the performance of state-of-the-art GNN models and provides a path for scalability.
arXiv Detail & Related papers (2021-11-20T22:39:11Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.