論文の概要: MMIL: A novel algorithm for disease associated cell type discovery
- arxiv url: http://arxiv.org/abs/2406.08322v1
- Date: Wed, 12 Jun 2024 15:22:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:16:39.864304
- Title: MMIL: A novel algorithm for disease associated cell type discovery
- Title(参考訳): MMIL : 疾患関連細胞型発見のための新しいアルゴリズム
- Authors: Erin Craig, Timothy Keyes, Jolanda Sarno, Maxim Zaslavsky, Garry Nolan, Kara Davis, Trevor Hastie, Robert Tibshirani,
- Abstract要約: 単一細胞データセットは、しばしば個々の細胞ラベルを欠いているため、病気に関連する細胞を特定することは困難である。
セルレベルの分類器の訓練と校正を可能にする予測手法であるMixture Modeling for Multiple Learning Instance (MMIL)を導入する。
- 参考スコア(独自算出の注目度): 58.044870442206914
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Single-cell datasets often lack individual cell labels, making it challenging to identify cells associated with disease. To address this, we introduce Mixture Modeling for Multiple Instance Learning (MMIL), an expectation maximization method that enables the training and calibration of cell-level classifiers using patient-level labels. Our approach can be used to train e.g. lasso logistic regression models, gradient boosted trees, and neural networks. When applied to clinically-annotated, primary patient samples in Acute Myeloid Leukemia (AML) and Acute Lymphoblastic Leukemia (ALL), our method accurately identifies cancer cells, generalizes across tissues and treatment timepoints, and selects biologically relevant features. In addition, MMIL is capable of incorporating cell labels into model training when they are known, providing a powerful framework for leveraging both labeled and unlabeled data simultaneously. Mixture Modeling for MIL offers a novel approach for cell classification, with significant potential to advance disease understanding and management, especially in scenarios with unknown gold-standard labels and high dimensionality.
- Abstract(参考訳): 単一細胞データセットは個々の細胞ラベルを欠くことが多く、病気に関連する細胞を特定することは困難である。
そこで我々は,患者レベルラベルを用いたセルレベルの分類器の訓練と校正を可能にする予測最大化手法であるMixture Modeling for Multiple Instance Learning (MMIL)を提案する。
我々のアプローチは、例えばラッソロジスティック回帰モデル、勾配向上木、ニューラルネットワークのトレーニングに使用することができる。
急性骨髄性白血病 (AML) および急性リンパ芽球性白血病 (ALL) の原発性患者検体に適用した場合, 本法は癌細胞を正確に同定し, 組織および治療時刻を一般化し, 生物学的に関連性のある特徴を選択する。
さらに、MMILはモデルトレーニングにセルラベルを組み込むことができ、ラベル付きデータとラベルなしデータの両方を同時に活用するための強力なフレームワークを提供する。
MILのMixture Modelingは、特に未知のゴールドスタンダードラベルと高次元性を持つシナリオにおいて、病気の理解と管理を促進する大きな可能性を持つ、細胞分類のための新しいアプローチを提供する。
関連論文リスト
- Self-Supervised Multiple Instance Learning for Acute Myeloid Leukemia Classification [1.1874560263468232]
急性骨髄性白血病(AML)のような疾患は、単細胞レベルでのアノテーションが不足し、コストがかかるため困難である。
マルチインスタンス学習(MIL)は、弱いラベル付きシナリオに対処するが、ラベル付きデータで訓練された強力なエンコーダを必要とする。
本研究では,MILをベースとしたサブタイプAML分類のための事前学習手法として,自己監督学習(SSL)について検討する。
論文 参考訳(メタデータ) (2024-03-08T15:16:15Z) - FlowCyt: A Comparative Study of Deep Learning Approaches for Multi-Class Classification in Flow Cytometry Benchmarking [1.6712896227173808]
FlowCytは、フローコードされたデータにおいて、マルチクラスのシングルセル分類のための最初の包括的なベンチマークである。
このデータセットは、30人の患者の骨髄サンプルからなり、各細胞は12個のマーカーで特徴づけられる。
論文 参考訳(メタデータ) (2024-02-28T15:01:59Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - MIML: Multiplex Image Machine Learning for High Precision Cell
Classification via Mechanical Traits within Microfluidic Systems [1.1675184588181313]
我々は、新しい機械学習フレームワーク、Multiformx Image Machine Learning (MIML)を開発した。
MIMLは、ラベルのない細胞画像と生体力学的特性データを組み合わせて、各細胞に固有の、しばしば使われにくい形態情報を利用する。
このアプローチにより、細胞分類における98.3%の精度が著しく向上し、単一のデータ型のみを考慮するモデルよりも大幅に改善された。
論文 参考訳(メタデータ) (2023-09-15T14:23:51Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
診断によって誘導される画像データと遺伝データを統合し、解釈可能なバイオマーカーを提供する新しいディープニューラルネットワークアーキテクチャを提案する。
2つの機能的MRI(fMRI)パラダイムとSingle Nucleotide Polymorphism (SNP)データを含む統合失調症の集団研究で本モデルを評価した。
論文 参考訳(メタデータ) (2021-01-27T19:28:04Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Cell Mechanics Based Computational Classification of Red Blood Cells Via
Machine Intelligence Applied to Morpho-Rheological Markers [0.0]
非教師なし機械学習手法は、リアルタイム変形性と蛍光(RT-FDC)により得られる形態・レオロジーマーカーにのみ適用される
提案手法は, 成熟赤血球由来の赤血球の分類において, ラベルフリーで有望な結果が得られたことを報告した。
論文 参考訳(メタデータ) (2020-03-02T15:11:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。