It's all about PR -- Smart Benchmarking AI Accelerators using Performance Representatives
- URL: http://arxiv.org/abs/2406.08330v1
- Date: Wed, 12 Jun 2024 15:34:28 GMT
- Title: It's all about PR -- Smart Benchmarking AI Accelerators using Performance Representatives
- Authors: Alexander Louis-Ferdinand Jung, Jannik Steinmetz, Jonathan Gietz, Konstantin Lübeck, Oliver Bringmann,
- Abstract summary: Training of statistical performance models often requires vast amounts of data, leading to a significant time investment and can be difficult in case of limited hardware availability.
We propose a novel performance modeling methodology that significantly reduces the number of training samples while maintaining good accuracy.
We achieve a Mean Absolute Percentage Error (MAPE) of as low as 0.02% for single-layer estimations and 0.68% for whole estimations with less than 10000 training samples.
- Score: 40.197673152937256
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Statistical models are widely used to estimate the performance of commercial off-the-shelf (COTS) AI hardware accelerators. However, training of statistical performance models often requires vast amounts of data, leading to a significant time investment and can be difficult in case of limited hardware availability. To alleviate this problem, we propose a novel performance modeling methodology that significantly reduces the number of training samples while maintaining good accuracy. Our approach leverages knowledge of the target hardware architecture and initial parameter sweeps to identify a set of Performance Representatives (PR) for deep neural network (DNN) layers. These PRs are then used for benchmarking, building a statistical performance model, and making estimations. This targeted approach drastically reduces the number of training samples needed, opposed to random sampling, to achieve a better estimation accuracy. We achieve a Mean Absolute Percentage Error (MAPE) of as low as 0.02% for single-layer estimations and 0.68% for whole DNN estimations with less than 10000 training samples. The results demonstrate the superiority of our method for single-layer estimations compared to models trained with randomly sampled datasets of the same size.
Related papers
- A Framework for Efficient Model Evaluation through Stratification, Sampling, and Estimation [17.351089059392674]
We propose a framework for model evaluation that includes stratification, sampling, and estimation components.
We show that stratification via k-means clustering based on accurate predictions of model performance yields efficient estimators.
We also find that model-assisted estimators, which leverage predictions of model accuracy on the unlabeled portion of the dataset, are generally more efficient than the traditional estimates.
arXiv Detail & Related papers (2024-06-11T14:49:04Z) - Few-Shot Load Forecasting Under Data Scarcity in Smart Grids: A Meta-Learning Approach [0.18641315013048293]
This paper proposes adapting an established model-agnostic meta-learning algorithm for short-term load forecasting.
The proposed method can rapidly adapt and generalize within any unknown load time series of arbitrary length.
The proposed model is evaluated using a dataset of historical load consumption data from real-world consumers.
arXiv Detail & Related papers (2024-06-09T18:59:08Z) - PUMA: margin-based data pruning [51.12154122266251]
We focus on data pruning, where some training samples are removed based on the distance to the model classification boundary (i.e., margin)
We propose PUMA, a new data pruning strategy that computes the margin using DeepFool.
We show that PUMA can be used on top of the current state-of-the-art methodology in robustness, and it is able to significantly improve the model performance unlike the existing data pruning strategies.
arXiv Detail & Related papers (2024-05-10T08:02:20Z) - How to Train Data-Efficient LLMs [56.41105687693619]
We study data-efficient approaches for pre-training language models (LLMs)
We find that Ask-LLM and Density sampling are the best methods in their respective categories.
In our comparison of 19 samplers, involving hundreds of evaluation tasks and pre-training runs, we find that Ask-LLM and Density are the best methods in their respective categories.
arXiv Detail & Related papers (2024-02-15T02:27:57Z) - Adaptive Sampling for Deep Learning via Efficient Nonparametric Proxies [35.29595714883275]
We develop an efficient sketch-based approximation to the Nadaraya-Watson estimator.
Our sampling algorithm outperforms the baseline in terms of wall-clock time and accuracy on four datasets.
arXiv Detail & Related papers (2023-11-22T18:40:18Z) - Stabilizing Subject Transfer in EEG Classification with Divergence
Estimation [17.924276728038304]
We propose several graphical models to describe an EEG classification task.
We identify statistical relationships that should hold true in an idealized training scenario.
We design regularization penalties to enforce these relationships in two stages.
arXiv Detail & Related papers (2023-10-12T23:06:52Z) - A Meta-Learning Approach to Predicting Performance and Data Requirements [163.4412093478316]
We propose an approach to estimate the number of samples required for a model to reach a target performance.
We find that the power law, the de facto principle to estimate model performance, leads to large error when using a small dataset.
We introduce a novel piecewise power law (PPL) that handles the two data differently.
arXiv Detail & Related papers (2023-03-02T21:48:22Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
Estimating the number of distinct values (NDV) in a column is useful for many tasks in database systems.
In this work, we focus on how to derive accurate NDV estimations from random (online/offline) samples.
We propose to formulate the NDV estimation task in a supervised learning framework, and aim to learn a model as the estimator.
arXiv Detail & Related papers (2022-02-06T15:42:04Z) - Complementary Ensemble Learning [1.90365714903665]
We derive a technique to improve performance of state-of-the-art deep learning models.
Specifically, we train auxiliary models which are able to complement state-of-the-art model uncertainty.
arXiv Detail & Related papers (2021-11-09T03:23:05Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
We propose a novel framework to efficiently test a machine learning model using only a small amount of labeled test data.
The idea is to estimate the metrics of interest for a model-under-test using Bayesian neural network (BNN)
arXiv Detail & Related papers (2021-04-11T12:14:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.