論文の概要: ProTrain: Efficient LLM Training via Memory-Aware Techniques
- arxiv url: http://arxiv.org/abs/2406.08334v1
- Date: Wed, 12 Jun 2024 15:40:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 16:16:39.849040
- Title: ProTrain: Efficient LLM Training via Memory-Aware Techniques
- Title(参考訳): ProTrain: メモリ認識技術による効率的なLLMトレーニング
- Authors: Hanmei Yang, Jin Zhou, Yao Fu, Xiaoqun Wang, Ramine Roane, Hui Guan, Tongping Liu,
- Abstract要約: 本稿では,メモリ,計算,IOの調整によってメモリ使用量と性能のバランスをとる新しいトレーニングシステムであるProTrainを提案する。
ProTrainは、SOTAのトレーニングシステムと比較して、トレーニングのスループットを1.43$times$から2.71$timesに改善する。
- 参考スコア(独自算出の注目度): 18.30799115938978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is extremely memory-hungry to train Large Language Models (LLM). To solve this problem, existing work exploits the combination of CPU and GPU for the training process, such as ZeRO-Offload. Such a technique largely democratizes billion-scale model training, making it possible to train with few consumer graphics cards. However, based on our observation, existing frameworks often provide coarse-grained memory management and require experienced experts in configuration tuning, leading to suboptimal hardware utilization and performance. This paper proposes ProTrain, a novel training system that intelligently balances memory usage and performance by coordinating memory, computation, and IO. ProTrain achieves adaptive memory management through Chunk-Based Model State Management and Block-Wise Activation Management, guided by a Memory-Aware Runtime Profiler without user intervention. ProTrain does not change the training algorithm and thus does not compromise accuracy. Experiments show that ProTrain improves training throughput by 1.43$\times$ to 2.71$\times$ compared to the SOTA training systems.
- Abstract(参考訳): LLM(Large Language Models)を訓練するのは非常にメモリ不足です。
この問題を解決するために、既存の作業では、ZeRO-OffloadのようなトレーニングプロセスにCPUとGPUの組み合わせを活用している。
このような技術は何十億ものモデルトレーニングを民主化し、少数の消費者向けグラフィックカードでトレーニングすることができる。
しかしながら,既存のフレームワークではメモリ管理が粗い場合が多く,設定チューニングに熟練した専門家が必要であり,ハードウェアの最適利用と性能が向上する。
本稿では,メモリ,計算,IOを協調してメモリ使用量と性能をインテリジェントにバランスさせる新しいトレーニングシステムであるProTrainを提案する。
ProTrainは、Chunkベースのモデル状態管理とBlock-Wise Activation Managementを通じて、ユーザの介入なしにMemory-Aware Runtime Profilerによってガイドされる適応型メモリ管理を実現する。
ProTrainはトレーニングアルゴリズムを変更しないため、精度を損なわない。
実験によると、ProTrainはSOTAのトレーニングシステムと比較して、トレーニングのスループットを1.43$\times$から2.71$\times$に改善している。
関連論文リスト
- Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs [24.066283519769968]
大規模言語モデル(LLM)は、よりクリエイティブなアプリケーションを促進するために、拡張コンテキスト長を使用して訓練されている。
本稿では,メモリ管理を微粒化するための新しいフレームワークであるMEMOを提案する。
我々は,MEMOがMegatron-LMやDeepSpeedと比較して平均2.42倍,2.26倍のMFUを達成することを示す。
論文 参考訳(メタデータ) (2024-07-16T18:59:49Z) - CoMERA: Computing- and Memory-Efficient Training via Rank-Adaptive Tensor Optimization [10.319009303849109]
ディープラーニングレコメンデーションシステムや基礎言語(あるいはマルチモーダル)モデルといった大規模なAIモデルのトレーニングには、膨大なGPUと計算時間を要する。
CoMERAは、多目的最適化の定式化により、エンドツーエンドのテンソル圧縮トレーニングを実現する。
CoMERAは1回のバッチトレーニングでテストされた6エンコーダトランスで、GaLoreよりも2倍高速で、9倍高速である。
論文 参考訳(メタデータ) (2024-05-23T09:52:15Z) - Block Selective Reprogramming for On-device Training of Vision Transformers [12.118303034660531]
本稿では,事前学習したモデルのブロック全体のごく一部のみを微調整するブロック選択型再プログラミング(BSR)を提案する。
既存の代替手法と比較して、トレーニングメモリを最大1.4倍、計算コストを最大2倍に削減する。
論文 参考訳(メタデータ) (2024-03-25T08:41:01Z) - GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [133.45193150403537]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。
本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。
私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (2024-03-06T07:29:57Z) - Time-, Memory- and Parameter-Efficient Visual Adaptation [75.28557015773217]
バックボーンを介して勾配をバックプロパゲートしない適応法を提案する。
凍結した、事前訓練されたバックボーンの機能を利用する軽量ネットワークを並列に設計することで、これを実現する。
論文 参考訳(メタデータ) (2024-02-05T10:55:47Z) - Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD)は高速で、訓練データの長期保存を必要としない。
高速で性能が高く,トレーニングデータの長期保存を必要としない,新しい2段階のポストホック,リトレーニングフリーなマシンアンラーニング手法を提案する。
論文 参考訳(メタデータ) (2023-08-15T11:30:45Z) - Task-oriented Memory-efficient Pruning-Adapter [3.0751447761822903]
本稿では,トレーニングとメモリの高メモリ効率を実現するタスク指向のPruning-Adapter法を提案する。
GLUEタスクの精度は大幅に低下せず、同時にトレーニングと推論の効率が向上した。
論文 参考訳(メタデータ) (2023-03-26T12:18:00Z) - Failure Tolerant Training with Persistent Memory Disaggregation over CXL [7.700500756012469]
本稿では,分散メモリのプール内で大規模レコメンデーションデータセットを効率的に処理できるTRAININGCXLを提案する。
この目的のために、永続メモリ(PMEM)とGPUをキャッシュコヒーレントなドメインにType-2として統合する。
評価の結果,TRAININGCXLはPMEMベースの推薦システムと比較して5.2倍のトレーニング性能向上と76%の省エネを実現していることがわかった。
論文 参考訳(メタデータ) (2023-01-14T05:59:07Z) - On-Device Training Under 256KB Memory [62.95579393237751]
本稿では,256KBのメモリでデバイス上でのトレーニングを可能にするアルゴリズム・システム協調設計フレームワークを提案する。
私たちのフレームワークは256KBと1MBのFlashで畳み込みニューラルネットワークのデバイス上での小さなトレーニングを可能にする最初のソリューションです。
論文 参考訳(メタデータ) (2022-06-30T17:59:08Z) - Online Convolutional Re-parameterization [51.97831675242173]
2段階のパイプラインであるオンライン畳み込み再パラメータ化(OREPA)は、複雑なトレーニング時間ブロックを単一の畳み込みに絞ることで、巨大なトレーニングオーバーヘッドを低減することを目的としている。
最先端のre-paramモデルと比較して、OREPAはトレーニング時間のメモリコストを約70%削減し、トレーニング速度を約2倍向上させることができる。
また、オブジェクト検出とセマンティックセグメンテーションの実験を行い、下流タスクに一貫した改善を示す。
論文 参考訳(メタデータ) (2022-04-02T09:50:19Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
ディープニューラルネットワーク(DNN)は重いパラメータ化を伴い、ストレージ用の外部動的ランダムアクセスメモリ(DRAM)につながります。
We present SmartDeal (SD), a algorithm framework to trade high-cost memory storage/ access for lower-cost compute。
SDは貯蔵および訓練エネルギーの10.56xそして4.48x減少、最先端の訓練のベースラインと比較される無視可能な正確さの損失をもたらすことを示します。
論文 参考訳(メタデータ) (2021-01-04T18:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。