FontStudio: Shape-Adaptive Diffusion Model for Coherent and Consistent Font Effect Generation
- URL: http://arxiv.org/abs/2406.08392v1
- Date: Wed, 12 Jun 2024 16:43:47 GMT
- Title: FontStudio: Shape-Adaptive Diffusion Model for Coherent and Consistent Font Effect Generation
- Authors: Xinzhi Mu, Li Chen, Bohan Chen, Shuyang Gu, Jianmin Bao, Dong Chen, Ji Li, Yuhui Yuan,
- Abstract summary: This research aims to tackle the generation of text effects for multilingual fonts.
We introduce a novel shape-adaptive diffusion model capable of interpreting the given shape.
We also present a training-free, shape-adaptive effect transfer method for transferring textures from a generated reference letter to others.
- Score: 38.730628018627975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the application of modern diffusion-based text-to-image generation models for creating artistic fonts, traditionally the domain of professional designers, has garnered significant interest. Diverging from the majority of existing studies that concentrate on generating artistic typography, our research aims to tackle a novel and more demanding challenge: the generation of text effects for multilingual fonts. This task essentially requires generating coherent and consistent visual content within the confines of a font-shaped canvas, as opposed to a traditional rectangular canvas. To address this task, we introduce a novel shape-adaptive diffusion model capable of interpreting the given shape and strategically planning pixel distributions within the irregular canvas. To achieve this, we curate a high-quality shape-adaptive image-text dataset and incorporate the segmentation mask as a visual condition to steer the image generation process within the irregular-canvas. This approach enables the traditionally rectangle canvas-based diffusion model to produce the desired concepts in accordance with the provided geometric shapes. Second, to maintain consistency across multiple letters, we also present a training-free, shape-adaptive effect transfer method for transferring textures from a generated reference letter to others. The key insights are building a font effect noise prior and propagating the font effect information in a concatenated latent space. The efficacy of our FontStudio system is confirmed through user preference studies, which show a marked preference (78% win-rates on aesthetics) for our system even when compared to the latest unrivaled commercial product, Adobe Firefly.
Related papers
- VitaGlyph: Vitalizing Artistic Typography with Flexible Dual-branch Diffusion Models [53.59400446543756]
We introduce a dual-branch and training-free method, namely VitaGlyph, to enable flexible artistic typography.
VitaGlyph treats input character as a scene composed of Subject and Surrounding, followed by rendering them under varying degrees of geometry transformation.
Experimental results demonstrate that VitaGlyph not only achieves better artistry and readability, but also manages to depict multiple customize concepts.
arXiv Detail & Related papers (2024-10-02T16:48:47Z) - GRIF-DM: Generation of Rich Impression Fonts using Diffusion Models [18.15911470339845]
We introduce a diffusion-based method, termed ourmethod, to generate fonts that vividly embody specific impressions.
Our experimental results, conducted on the MyFonts dataset, affirm that this method is capable of producing realistic, vibrant, and high-fidelity fonts.
arXiv Detail & Related papers (2024-08-14T02:26:46Z) - ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models [52.23899502520261]
We introduce a new framework named ARTIST to focus on the learning of text structures.
We finetune a visual diffusion model, enabling it to assimilate textual structure information from the pretrained textual model.
Empirical results on the MARIO-Eval benchmark underscore the effectiveness of the proposed method, showing an improvement of up to 15% in various metrics.
arXiv Detail & Related papers (2024-06-17T19:31:24Z) - Typographic Text Generation with Off-the-Shelf Diffusion Model [7.542892664684078]
This paper proposes a typographic text generation system to add and modify text on typographic designs.
The proposed system is a novel combination of two off-the-shelf methods for diffusion models, ControlNet and Blended Latent Diffusion.
arXiv Detail & Related papers (2024-02-22T06:15:51Z) - Pick-and-Draw: Training-free Semantic Guidance for Text-to-Image
Personalization [56.12990759116612]
Pick-and-Draw is a training-free semantic guidance approach to boost identity consistency and generative diversity for personalization methods.
The proposed approach can be applied to any personalized diffusion models and requires as few as a single reference image.
arXiv Detail & Related papers (2024-01-30T05:56:12Z) - ControlStyle: Text-Driven Stylized Image Generation Using Diffusion
Priors [105.37795139586075]
We propose a new task for stylizing'' text-to-image models, namely text-driven stylized image generation.
We present a new diffusion model (ControlStyle) via upgrading a pre-trained text-to-image model with a trainable modulation network.
Experiments demonstrate the effectiveness of our ControlStyle in producing more visually pleasing and artistic results.
arXiv Detail & Related papers (2023-11-09T15:50:52Z) - GlyphDiffusion: Text Generation as Image Generation [100.98428068214736]
We propose GlyphDiffusion, a novel diffusion approach for text generation via text-guided image generation.
Our key idea is to render the target text as a glyph image containing visual language content.
Our model also makes significant improvements compared to the recent diffusion model.
arXiv Detail & Related papers (2023-04-25T02:14:44Z) - DS-Fusion: Artistic Typography via Discriminated and Stylized Diffusion [10.75789076591325]
We introduce a novel method to automatically generate an artistic typography by stylizing one or more letter fonts.
Our approach utilizes large language models to bridge texts and visual images for stylization and build an unsupervised generative model.
arXiv Detail & Related papers (2023-03-16T19:12:52Z) - GenText: Unsupervised Artistic Text Generation via Decoupled Font and
Texture Manipulation [30.654807125764965]
We propose a novel approach, namely GenText, to achieve general artistic text style transfer.
Specifically, our work incorporates three different stages, stylization, destylization, and font transfer.
Considering the difficult data acquisition of paired artistic text images, our model is designed under the unsupervised setting.
arXiv Detail & Related papers (2022-07-20T04:42:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.