論文の概要: Tailoring Generative AI Chatbots for Multiethnic Communities in Disaster Preparedness Communication: Extending the CASA Paradigm
- arxiv url: http://arxiv.org/abs/2406.08411v1
- Date: Wed, 12 Jun 2024 16:57:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 15:47:23.041329
- Title: Tailoring Generative AI Chatbots for Multiethnic Communities in Disaster Preparedness Communication: Extending the CASA Paradigm
- Title(参考訳): 災害準備コミュニケーションにおける多民族コミュニティのための生成AIチャットボットの作成:CASAパラダイムの拡張
- Authors: Xinyan Zhao, Yuan Sun, Wenlin Liu, Chau-Wai Wong,
- Abstract要約: 本研究は, GPT 4を用いたジェネレーティブAI(GenAI)チャットボットのプロトタイプを開発し, 多様な住民にハリケーン予知情報を伝達する試みである。
- 参考スコア(独自算出の注目度): 12.437576744262206
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study is among the first to develop different prototypes of generative AI (GenAI) chatbots powered by GPT 4 to communicate hurricane preparedness information to diverse residents. Drawing from the Computers Are Social Actors (CASA) paradigm and the literature on disaster vulnerability and cultural tailoring, this study conducted a between-subjects experiment with 441 Black, Hispanic, and Caucasian residents of Florida. A computational analysis of chat logs (N = 7,848) shows that anthropomorphism and personalization are key communication topics in GenAI chatbot-user interactions. SEM results (N = 441) suggest that GenAI chatbots varying in tone formality and cultural tailoring significantly predict bot perceptions and, subsequently, hurricane preparedness outcomes. These results highlight the potential of using GenAI chatbots to improve diverse communities' disaster preparedness.
- Abstract(参考訳): 本研究は, GPT 4を利用した汎用AI(GenAI)チャットボットのプロトタイプを開発し, 多様な住民にハリケーン対策情報を伝達する試みである。
The Computers Are Social Actors (CASA) paradigm and the literature on disaster vulnerability and cultural tailoring, this study performed a between-jects experiment with 441 Black, Hispanic, and Caucasian residents of Florida。
チャットログの計算解析 (N = 7,848) により,GenAIチャットボット-ユーザインタラクションにおいて,人文準同型とパーソナライゼーションが重要なコミュニケーショントピックであることが示された。
SEMの結果 (N = 441) は, トーンフォーマル性や文化的仕立ての異なるGenAIチャットボットがボットの知覚を著しく予測し, 続いてハリケーンの準備結果を予測することを示唆している。
これらの結果から,GenAIチャットボットを多種多様なコミュニティの災害対応性向上に活用する可能性が示唆された。
関連論文リスト
- Designing and Evaluating Multi-Chatbot Interface for Human-AI Communication: Preliminary Findings from a Persuasion Task [1.360607903399872]
本研究では, 特定の説得環境におけるマルチチャットボットコミュニケーションの効果について検討した。
マルチチャットボット通信が可能なオンライン環境を開発し,パイロット実験を行った。
本稿では,マルチチャットボットインタフェースの開発プロセスとパイロット実験による予備的な結果について述べる。
論文 参考訳(メタデータ) (2024-06-28T04:33:41Z) - CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - Battling Botpoop using GenAI for Higher Education: A Study of a Retrieval Augmented Generation Chatbots Impact on Learning [0.0]
本研究で紹介されるLeodar教授は、カスタムメイドのSinglish- speak Retrieval Augmented Generation (RAG)である。
Leodar教授は、AI支援学習の未来を垣間見るとともに、パーソナライズされたガイダンス、24/7の可用性、コンテキストに関連する情報を提供している。
論文 参考訳(メタデータ) (2024-06-12T01:19:36Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Generation Z's Ability to Discriminate Between AI-generated and
Human-Authored Text on Discord [0.32885740436059047]
DiscordはAI統合を可能にし、主にAI生成コンテンツに"ジェネレーションZ"ユーザベースをさらけ出す。
我々は,AI生成テキストと人間によるテキストの識別能力を評価するため,世代Zの高齢者を対象に調査を行った。
ジェネレーションZの個人は、AIと人間によるテキストを区別できない。
論文 参考訳(メタデータ) (2023-12-31T11:52:15Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - GenAI Against Humanity: Nefarious Applications of Generative Artificial
Intelligence and Large Language Models [11.323961700172175]
本稿は、GenAIのリスクとLLMの誤用に関する厳密な研究の合成として機能する。
我々は、私たちが目にしているGenAI革命に波及した社会的影響を明らかにする。
仮想世界と現実世界の境界線はぼやけており、GenAIの悪名高いアプリケーションの結果が私たち全員に影響を与えています。
論文 参考訳(メタデータ) (2023-10-01T17:25:56Z) - ChatGPT: Applications, Opportunities, and Threats [0.0]
ChatGPTは、教師付き機械学習と強化学習技術を用いて微調整された人工知能技術である。
このシステムは、事前学習されたディープラーニングモデルのパワーとプログラマビリティレイヤを組み合わせることで、自然言語会話を生成する強力な基盤を提供する。
自然に聞こえる応答を生成する能力は例外的であるが、著者らはChatGPTが人間と同じレベルの理解、共感、創造性を持っていないと考えている。
論文 参考訳(メタデータ) (2023-04-14T16:25:03Z) - A Categorical Archive of ChatGPT Failures [47.64219291655723]
OpenAIが開発したChatGPTは、大量のデータを使って訓練され、人間の会話をシミュレートしている。
それは、広範囲の人間の問い合わせに効果的に答える能力のために、大きな注目を集めている。
しかし、ChatGPTの失敗の包括的分析は欠落しており、これが本研究の焦点となっている。
論文 参考訳(メタデータ) (2023-02-06T04:21:59Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - Detecting Perceived Emotions in Hurricane Disasters [62.760131661847986]
私たちはHurricaneEmoを紹介します。HurricaneEmoは、Harvey、Irma、Mariaの3つのハリケーンにまたがる15,000の英語ツイートの感情データセットです。
本稿では, きめ細かい感情を包括的に研究し, 粗い感情群を識別するための分類タスクを提案する。
論文 参考訳(メタデータ) (2020-04-29T16:17:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。