RILe: Reinforced Imitation Learning
- URL: http://arxiv.org/abs/2406.08472v2
- Date: Mon, 21 Oct 2024 17:59:13 GMT
- Title: RILe: Reinforced Imitation Learning
- Authors: Mert Albaba, Sammy Christen, Thomas Langarek, Christoph Gebhardt, Otmar Hilliges, Michael J. Black,
- Abstract summary: RILe is a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations.
RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.
- Score: 60.63173816209543
- License:
- Abstract: Reinforcement Learning has achieved significant success in generating complex behavior but often requires extensive reward function engineering. Adversarial variants of Imitation Learning and Inverse Reinforcement Learning offer an alternative by learning policies from expert demonstrations via a discriminator. However, these methods struggle in complex tasks where randomly sampling expert-like behaviors is challenging. This limitation stems from their reliance on policy-agnostic discriminators, which provide insufficient guidance for agent improvement, especially as task complexity increases and expert behavior becomes more distinct. We introduce RILe (Reinforced Imitation Learning environment), a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations. In RILe, the student learns an action policy while the trainer, using reinforcement learning, continuously updates itself via the discriminator's feedback to optimize the alignment between the student and the expert. The trainer optimizes for long-term cumulative rewards from the discriminator, enabling it to provide nuanced feedback that accounts for the complexity of the task and the student's current capabilities. This approach allows for greater exploration of agent actions by providing graduated feedback rather than binary expert/non-expert classifications. By reducing dependence on policy-agnostic discriminators, RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.
Related papers
- Non-Adversarial Inverse Reinforcement Learning via Successor Feature Matching [23.600285251963395]
In inverse reinforcement learning (IRL), an agent seeks to replicate expert demonstrations through interactions with the environment.
Traditionally, IRL is treated as an adversarial game, where an adversary searches over reward models, and a learner optimize the reward through repeated RL procedures.
We propose a novel approach to IRL by direct policy optimization, exploiting a linear factorization of the return as the inner product of successor features and a reward vector.
arXiv Detail & Related papers (2024-11-11T14:05:50Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble [8.857776147129464]
Recovering reward function from expert demonstrations is a fundamental problem in reinforcement learning.
We present a dynamics-agnostic discriminator-ensemble reward learning method capable of learning both state-action and state-only reward functions.
arXiv Detail & Related papers (2022-06-01T05:16:39Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
We show that when the teaching agent makes decisions with access to privileged information, this information is marginalized during imitation learning.
We propose 'Adaptive Insubordination' (ADVISOR) to address this gap.
ADVISOR dynamically weights imitation and reward-based reinforcement learning losses during training, enabling on-the-fly switching between imitation and exploration.
arXiv Detail & Related papers (2020-07-23T17:59:57Z) - Off-Policy Adversarial Inverse Reinforcement Learning [0.0]
Adversarial Imitation Learning (AIL) is a class of algorithms in Reinforcement learning (RL)
We propose an Off-Policy Adversarial Inverse Reinforcement Learning (Off-policy-AIRL) algorithm which is sample efficient as well as gives good imitation performance.
arXiv Detail & Related papers (2020-05-03T16:51:40Z) - Human AI interaction loop training: New approach for interactive
reinforcement learning [0.0]
Reinforcement Learning (RL) in various decision-making tasks of machine learning provides effective results with an agent learning from a stand-alone reward function.
RL presents unique challenges with large amounts of environment states and action spaces, as well as in the determination of rewards.
Imitation Learning (IL) offers a promising solution for those challenges using a teacher.
arXiv Detail & Related papers (2020-03-09T15:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.