Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble
- URL: http://arxiv.org/abs/2206.00238v2
- Date: Wed, 26 Jun 2024 08:24:26 GMT
- Title: Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble
- Authors: Fan-Ming Luo, Xingchen Cao, Rong-Jun Qin, Yang Yu,
- Abstract summary: Recovering reward function from expert demonstrations is a fundamental problem in reinforcement learning.
We present a dynamics-agnostic discriminator-ensemble reward learning method capable of learning both state-action and state-only reward functions.
- Score: 8.857776147129464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recovering reward function from expert demonstrations is a fundamental problem in reinforcement learning. The recovered reward function captures the motivation of the expert. Agents can imitate experts by following these reward functions in their environment, which is known as apprentice learning. However, the agents may face environments different from the demonstrations, and therefore, desire transferable reward functions. Classical reward learning methods such as inverse reinforcement learning (IRL) or, equivalently, adversarial imitation learning (AIL), recover reward functions coupled with training dynamics, which are hard to be transferable. Previous dynamics-agnostic reward learning methods rely on assumptions such as that the reward function has to be state-only, restricting their applicability. In this work, we present a dynamics-agnostic discriminator-ensemble reward learning method (DARL) within the AIL framework, capable of learning both state-action and state-only reward functions. DARL achieves this by decoupling the reward function from training dynamics, employing a dynamics-agnostic discriminator on a latent space derived from the original state-action space. This latent space is optimized to minimize information on the dynamics. We moreover discover the policy-dependency issue of the AIL framework that reduces the transferability. DARL represents the reward function as an ensemble of discriminators during training to eliminate policy dependencies. Empirical studies on MuJoCo tasks with changed dynamics show that DARL better recovers the reward function and results in better imitation performance in transferred environments, handling both state-only and state-action reward scenarios.
Related papers
- Learning Causally Invariant Reward Functions from Diverse Demonstrations [6.351909403078771]
Inverse reinforcement learning methods aim to retrieve the reward function of a Markov decision process based on a dataset of expert demonstrations.
This adaptation often exhibits overfitting to the expert data set when a policy is trained on the obtained reward function under distribution shift of the environment dynamics.
In this work, we explore a novel regularization approach for inverse reinforcement learning methods based on the causal invariance principle with the goal of improved reward function generalization.
arXiv Detail & Related papers (2024-09-12T12:56:24Z) - RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations.
RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - CLARE: Conservative Model-Based Reward Learning for Offline Inverse
Reinforcement Learning [26.05184273238923]
This work aims to tackle a major challenge in offline Inverse Reinforcement Learning (IRL)
We devise a principled algorithm (namely CLARE) that solves offline IRL efficiently via integrating "conservatism" into a learned reward function.
Our theoretical analysis provides an upper bound on the return gap between the learned policy and the expert policy.
arXiv Detail & Related papers (2023-02-09T17:16:29Z) - Internally Rewarded Reinforcement Learning [22.01249652558878]
We study a class of reinforcement learning problems where the reward signals for policy learning are generated by an internal reward model.
We show that the proposed reward function can consistently stabilize the training process by reducing the impact of reward noise.
arXiv Detail & Related papers (2023-02-01T06:25:46Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Adversarial Motion Priors Make Good Substitutes for Complex Reward
Functions [124.11520774395748]
Reinforcement learning practitioners often utilize complex reward functions that encourage physically plausible behaviors.
We propose substituting complex reward functions with "style rewards" learned from a dataset of motion capture demonstrations.
A learned style reward can be combined with an arbitrary task reward to train policies that perform tasks using naturalistic strategies.
arXiv Detail & Related papers (2022-03-28T21:17:36Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Curious Exploration and Return-based Memory Restoration for Deep
Reinforcement Learning [2.3226893628361682]
In this paper, we focus on training a single agent to score goals with binary success/failure reward function.
The proposed method can be utilized to train agents in environments with fairly complex state and action spaces.
arXiv Detail & Related papers (2021-05-02T16:01:34Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z) - Ecological Reinforcement Learning [76.9893572776141]
We study the kinds of environment properties that can make learning under such conditions easier.
understanding how properties of the environment impact the performance of reinforcement learning agents can help us to structure our tasks in ways that make learning tractable.
arXiv Detail & Related papers (2020-06-22T17:55:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.