RILe: Reinforced Imitation Learning
- URL: http://arxiv.org/abs/2406.08472v3
- Date: Mon, 03 Feb 2025 13:57:58 GMT
- Title: RILe: Reinforced Imitation Learning
- Authors: Mert Albaba, Sammy Christen, Thomas Langarek, Christoph Gebhardt, Otmar Hilliges, Michael J. Black,
- Abstract summary: RILe is a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently.
Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors.
- Score: 60.63173816209543
- License:
- Abstract: Acquiring complex behaviors is essential for artificially intelligent agents, yet learning these behaviors in high-dimensional settings poses a significant challenge due to the vast search space. Traditional reinforcement learning (RL) requires extensive manual effort for reward function engineering. Inverse reinforcement learning (IRL) uncovers reward functions from expert demonstrations but relies on an iterative process that is often computationally expensive. Imitation learning (IL) provides a more efficient alternative by directly comparing an agent's actions to expert demonstrations; however, in high-dimensional environments, such direct comparisons offer insufficient feedback for effective learning. We introduce RILe (Reinforced Imitation Learning), a framework that combines the strengths of imitation learning and inverse reinforcement learning to learn a dense reward function efficiently and achieve strong performance in high-dimensional tasks. RILe employs a novel trainer-student framework: the trainer learns an adaptive reward function, and the student uses this reward signal to imitate expert behaviors. By dynamically adjusting its guidance as the student evolves, the trainer provides nuanced feedback across different phases of learning. Our framework produces high-performing policies in high-dimensional tasks where direct imitation fails to replicate complex behaviors. We validate RILe in challenging robotic locomotion tasks, demonstrating that it significantly outperforms existing methods and achieves near-expert performance across multiple settings.
Related papers
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Transferable Reward Learning by Dynamics-Agnostic Discriminator Ensemble [8.857776147129464]
Recovering reward function from expert demonstrations is a fundamental problem in reinforcement learning.
We present a dynamics-agnostic discriminator-ensemble reward learning method capable of learning both state-action and state-only reward functions.
arXiv Detail & Related papers (2022-06-01T05:16:39Z) - ReIL: A Framework for Reinforced Intervention-based Imitation Learning [3.0846824529023387]
We introduce Reinforced Intervention-based Learning (ReIL), a framework consisting of a general intervention-based learning algorithm and a multi-task imitation learning model.
Experimental results from real world mobile robot navigation challenges indicate that ReIL learns rapidly from sparse supervisor corrections without suffering deterioration in performance.
arXiv Detail & Related papers (2022-03-29T09:30:26Z) - Learning from Guided Play: A Scheduled Hierarchical Approach for
Improving Exploration in Adversarial Imitation Learning [7.51557557629519]
We present Learning from Guided Play (LfGP), a framework in which we leverage expert demonstrations of, in addition to a main task, multiple auxiliary tasks.
This affords many benefits: learning efficiency is improved for main tasks with challenging bottleneck transitions, expert data becomes reusable between tasks, and transfer learning through the reuse of learned auxiliary task models becomes possible.
arXiv Detail & Related papers (2021-12-16T14:58:08Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
We propose a generative inverse reinforcement learning for user behavioral preference modelling.
Our model can automatically learn the rewards from user's actions based on discriminative actor-critic network and Wasserstein GAN.
arXiv Detail & Related papers (2021-05-03T13:14:25Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
We show that when the teaching agent makes decisions with access to privileged information, this information is marginalized during imitation learning.
We propose 'Adaptive Insubordination' (ADVISOR) to address this gap.
ADVISOR dynamically weights imitation and reward-based reinforcement learning losses during training, enabling on-the-fly switching between imitation and exploration.
arXiv Detail & Related papers (2020-07-23T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.