論文の概要: Strategies for Pretraining Neural Operators
- arxiv url: http://arxiv.org/abs/2406.08473v2
- Date: Wed, 02 Oct 2024 16:37:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-03 15:16:52.297495
- Title: Strategies for Pretraining Neural Operators
- Title(参考訳): ニューラル演算子の事前学習戦略
- Authors: Anthony Zhou, Cooper Lorsung, AmirPouya Hemmasian, Amir Barati Farimani,
- Abstract要約: 偏微分方程式(PDE)モデリングの事前トレーニングは、一般化性と性能を改善するために、データセットをまたいだニューラルネットワークのスケーリングを約束している。
我々は,事前学習のダイナミクスを特徴付けるために,アーキテクチャ選択を最適化することなく,事前学習手法を比較した。
プレトレーニングはモデルとデータセットの選択に大きく依存するが、一般的な転送学習や物理ベースのプレトレーニング戦略が最も有効である。
- 参考スコア(独自算出の注目度): 5.812284760539713
- License:
- Abstract: Pretraining for partial differential equation (PDE) modeling has recently shown promise in scaling neural operators across datasets to improve generalizability and performance. Despite these advances, our understanding of how pretraining affects neural operators is still limited; studies generally propose tailored architectures and datasets that make it challenging to compare or examine different pretraining frameworks. To address this, we compare various pretraining methods without optimizing architecture choices to characterize pretraining dynamics on different models and datasets as well as to understand its scaling and generalization behavior. We find that pretraining is highly dependent on model and dataset choices, but in general transfer learning or physics-based pretraining strategies work best. In addition, pretraining performance can be further improved by using data augmentations. Lastly, pretraining can be additionally beneficial when fine-tuning in scarce data regimes or when generalizing to downstream data similar to the pretraining distribution. Through providing insights into pretraining neural operators for physics prediction, we hope to motivate future work in developing and evaluating pretraining methods for PDEs.
- Abstract(参考訳): 偏微分方程式(PDE)モデリングの事前トレーニングは、一般化性と性能を改善するために、データセットをまたいだニューラルネットワークのスケーリングを約束している。
これらの進歩にもかかわらず、プレトレーニングが神経オペレータにどのように影響するかについての私たちの理解はまだ限られている。
これを解決するために、アーキテクチャの選択を最適化することなく、様々なモデルやデータセット上で事前学習のダイナミクスを特徴付けるとともに、そのスケーリングと一般化の振る舞いを理解するために、様々な事前学習手法を比較した。
プレトレーニングはモデルとデータセットの選択に大きく依存するが、一般的な転送学習や物理ベースのプレトレーニング戦略が最も有効である。
さらに、データ拡張を使用することで、事前学習性能をさらに向上することができる。
最後に、事前学習は、不足するデータレギュレーションの微調整や、事前学習分布と同様の下流データに一般化する場合にも有益である。
物理予測のためのプレトレーニングニューラルネットワークに関する洞察を提供することで、PDEの事前トレーニング手法の開発と評価における今後の取り組みを動機づけたいと考えています。
関連論文リスト
- Task-Oriented Pre-Training for Drivable Area Detection [5.57325257338134]
本稿では,冗長なセグメンテーションの提案から始まるタスク指向の事前学習手法を提案する。
次に、コントラスト言語画像事前学習(CLIP)モデルを微調整するための特定カテゴリー強化微調整(SCEF)戦略を導入する。
このアプローチは、手動のアノテートデータを使用してさらに微調整された事前学習モデルの粗いトレーニングデータを生成することができる。
論文 参考訳(メタデータ) (2024-09-30T10:25:47Z) - Learning with Noisy Foundation Models [95.50968225050012]
本論文は、事前学習データセットにおけるノイズの性質を包括的に理解し分析する最初の研究である。
雑音の悪影響を緩和し、一般化を改善するため、特徴空間に適応するチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2024-03-11T16:22:41Z) - Better with Less: A Data-Active Perspective on Pre-Training Graph Neural
Networks [39.71761440499148]
グラフニューラルネットワーク(GNN)の事前トレーニングは、ラベルのないデータで下流タスクの転送可能な知識を学ぶことを目的としている。
より少ないが慎重に選択されたデータはGNNモデルに入力される。
実験の結果,提案手法により,より少ないトレーニングデータとより優れたダウンストリーム性能を有する効率的な事前学習モデルが得られることがわかった。
論文 参考訳(メタデータ) (2023-11-02T07:09:59Z) - Understanding and Mitigating the Label Noise in Pre-training on
Downstream Tasks [91.15120211190519]
本稿では、事前学習データセットにおけるノイズの性質を理解し、下流タスクへの影響を軽減することを目的とする。
雑音の悪影響を軽減するために特徴空間に適応する軽量ブラックボックスチューニング法(NMTune)を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:18:15Z) - Examining the Effect of Pre-training on Time Series Classification [21.38211396933795]
本研究では, プレトレーニング後の微調整が微調整過程に及ぼす影響について検討した。
150の分類データセットを網羅的に検討した。
事前学習は、データに適合しないモデルの最適化プロセスを改善するのにしか役立ちません。
事前学習データを追加することで一般化は向上しないが、元のデータボリュームの事前学習の利点を強化することができる。
論文 参考訳(メタデータ) (2023-09-11T06:26:57Z) - Knowledge Distillation as Efficient Pre-training: Faster Convergence,
Higher Data-efficiency, and Better Transferability [53.27240222619834]
効率的な事前学習としての知識蒸留は、学習した特徴表現を学習済みモデルから将来の下流タスクのための新しい学生モデルに効率的に転送することを目的としている。
提案手法は,3つの下流タスクにおける教師付き事前学習タスクと,10倍少ないデータと5倍少ない事前学習時間を必要とする9つの下流データセットとを比較検討する。
論文 参考訳(メタデータ) (2022-03-10T06:23:41Z) - Improved Fine-tuning by Leveraging Pre-training Data: Theory and
Practice [52.11183787786718]
対象データに事前学習されたモデルを微調整することは、多くのディープラーニングアプリケーションで広く利用されている。
近年の研究では、スクラッチからのトレーニングが、この事前トレーニング戦略に比較して、最終的なパフォーマンスを示すことが実証されている。
本稿では,対象タスクの一般化を改善するために,事前学習データからサブセットを選択する新しい選択戦略を提案する。
論文 参考訳(メタデータ) (2021-11-24T06:18:32Z) - Self-Supervised Pretraining Improves Self-Supervised Pretraining [83.1423204498361]
自己教師付き事前トレーニングには、高価で長い計算と大量のデータが必要で、データ拡張に敏感である。
本稿では,既存の事前学習モデルを用いて事前学習プロセスを初期化することにより,収束時間を短縮し,精度を向上させる階層的事前学習(HPT)について検討する。
HPTが最大80倍速く収束し、タスク全体の精度が向上し、自己監視された事前トレーニングプロセスの堅牢性が、画像増強ポリシーまたは事前トレーニングデータの量の変化に改善されることを示します。
論文 参考訳(メタデータ) (2021-03-23T17:37:51Z) - Multi-Stage Influence Function [97.19210942277354]
我々は、事前学習データまで遡って、微調整されたモデルから予測を追跡するための多段階影響関数スコアを開発する。
本研究は,2つのシナリオについて検討し,事前訓練した埋め込みを微調整タスクで固定または更新する。
論文 参考訳(メタデータ) (2020-07-17T16:03:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。