RMem: Restricted Memory Banks Improve Video Object Segmentation
- URL: http://arxiv.org/abs/2406.08476v1
- Date: Wed, 12 Jun 2024 17:59:04 GMT
- Title: RMem: Restricted Memory Banks Improve Video Object Segmentation
- Authors: Junbao Zhou, Ziqi Pang, Yu-Xiong Wang,
- Abstract summary: Video object segmentation (VOS) benchmarks are evolving to challenging scenarios.
We revisit a simple but overlooked strategy: restricting the size of memory banks.
By restricting memory banks to a limited number of essential frames, we achieve a notable improvement in VOS accuracy.
- Score: 26.103189475763998
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With recent video object segmentation (VOS) benchmarks evolving to challenging scenarios, we revisit a simple but overlooked strategy: restricting the size of memory banks. This diverges from the prevalent practice of expanding memory banks to accommodate extensive historical information. Our specially designed "memory deciphering" study offers a pivotal insight underpinning such a strategy: expanding memory banks, while seemingly beneficial, actually increases the difficulty for VOS modules to decode relevant features due to the confusion from redundant information. By restricting memory banks to a limited number of essential frames, we achieve a notable improvement in VOS accuracy. This process balances the importance and freshness of frames to maintain an informative memory bank within a bounded capacity. Additionally, restricted memory banks reduce the training-inference discrepancy in memory lengths compared with continuous expansion. This fosters new opportunities in temporal reasoning and enables us to introduce the previously overlooked "temporal positional embedding." Finally, our insights are embodied in "RMem" ("R" for restricted), a simple yet effective VOS modification that excels at challenging VOS scenarios and establishes new state of the art for object state changes (on the VOST dataset) and long videos (on the Long Videos dataset). Our code and demo are available at https://restricted-memory.github.io/.
Related papers
- ReWind: Understanding Long Videos with Instructed Learnable Memory [8.002949551539297]
Vision-Language Models (VLMs) are crucial for applications requiring integrated understanding textual and visual information.
We introduce ReWind, a novel memory-based VLM designed for efficient long video understanding while preserving temporal fidelity.
We empirically demonstrate ReWind's superior performance in visual question answering (VQA) and temporal grounding tasks, surpassing previous methods on long video benchmarks.
arXiv Detail & Related papers (2024-11-23T13:23:22Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - Efficient Video Object Segmentation via Modulated Cross-Attention Memory [123.12273176475863]
We propose a transformer-based approach, named MAVOS, to model temporal smoothness without requiring frequent memory expansion.
Our MAVOS achieves a J&F score of 63.3% while operating at 37 frames per second (FPS) on a single V100 GPU.
arXiv Detail & Related papers (2024-03-26T17:59:58Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit.
We propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history.
arXiv Detail & Related papers (2023-06-12T15:13:39Z) - READMem: Robust Embedding Association for a Diverse Memory in
Unconstrained Video Object Segmentation [24.813416082160224]
We present READMem, a modular framework for sVOS methods to handle unconstrained videos.
We propose a robust association of the embeddings stored in the memory with query embeddings during the update process.
Our approach achieves competitive results on the Long-time Video dataset (LV1) while not hindering performance on short sequences.
arXiv Detail & Related papers (2023-05-22T08:31:16Z) - Learning Quality-aware Dynamic Memory for Video Object Segmentation [32.06309833058726]
We propose a Quality-aware Dynamic Memory Network (QDMN) to evaluate the segmentation quality of each frame.
Our QDMN achieves new state-of-the-art performance on both DAVIS and YouTube-VOS benchmarks.
arXiv Detail & Related papers (2022-07-16T12:18:04Z) - XMem: Long-Term Video Object Segmentation with an Atkinson-Shiffrin
Memory Model [137.50614198301733]
We present XMem, a video object segmentation architecture for long videos with unified feature memory stores.
We develop an architecture that incorporates multiple independent yet deeply-connected feature memory stores.
XMem greatly exceeds state-of-the-art performance on long-video datasets.
arXiv Detail & Related papers (2022-07-14T17:59:37Z) - Recurrent Dynamic Embedding for Video Object Segmentation [54.52527157232795]
We propose a Recurrent Dynamic Embedding (RDE) to build a memory bank of constant size.
We propose an unbiased guidance loss during the training stage, which makes SAM more robust in long videos.
We also design a novel self-correction strategy so that the network can repair the embeddings of masks with different qualities in the memory bank.
arXiv Detail & Related papers (2022-05-08T02:24:43Z) - LaMemo: Language Modeling with Look-Ahead Memory [50.6248714811912]
We propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens.
LaMemo embraces bi-directional attention and segment recurrence with an additional overhead only linearly proportional to the memory length.
Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory.
arXiv Detail & Related papers (2022-04-15T06:11:25Z) - Adaptive Memory Management for Video Object Segmentation [6.282068591820945]
A matching-based network stores every-k frames in an external memory bank for future inference.
The size of the memory bank gradually increases with the length of the video, which slows down inference speed and makes it impractical to handle arbitrary length videos.
This paper proposes an adaptive memory bank strategy for matching-based networks for semi-supervised video object segmentation (VOS) that can handle videos of arbitrary length by discarding obsolete features.
arXiv Detail & Related papers (2022-04-13T19:59:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.