Real3D: Scaling Up Large Reconstruction Models with Real-World Images
- URL: http://arxiv.org/abs/2406.08479v1
- Date: Wed, 12 Jun 2024 17:59:08 GMT
- Title: Real3D: Scaling Up Large Reconstruction Models with Real-World Images
- Authors: Hanwen Jiang, Qixing Huang, Georgios Pavlakos,
- Abstract summary: Real3D is the first LRM system that can be trained using single-view real-world images.
We propose two unsupervised losses that allow us to supervise LRMs at the pixel- and semantic-level.
We develop an automatic data curation approach to collect high-quality examples from in-the-wild images.
- Score: 34.735198125706326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The default strategy for training single-view Large Reconstruction Models (LRMs) follows the fully supervised route using large-scale datasets of synthetic 3D assets or multi-view captures. Although these resources simplify the training procedure, they are hard to scale up beyond the existing datasets and they are not necessarily representative of the real distribution of object shapes. To address these limitations, in this paper, we introduce Real3D, the first LRM system that can be trained using single-view real-world images. Real3D introduces a novel self-training framework that can benefit from both the existing synthetic data and diverse single-view real images. We propose two unsupervised losses that allow us to supervise LRMs at the pixel- and semantic-level, even for training examples without ground-truth 3D or novel views. To further improve performance and scale up the image data, we develop an automatic data curation approach to collect high-quality examples from in-the-wild images. Our experiments show that Real3D consistently outperforms prior work in four diverse evaluation settings that include real and synthetic data, as well as both in-domain and out-of-domain shapes. Code and model can be found here: https://hwjiang1510.github.io/Real3D/
Related papers
- ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models [65.22994156658918]
We present a method that learns to generate multi-view images in a single denoising process from real-world data.
We design an autoregressive generation that renders more 3D-consistent images at any viewpoint.
arXiv Detail & Related papers (2024-03-04T07:57:05Z) - LRM: Large Reconstruction Model for Single Image to 3D [61.47357798633123]
We propose the first Large Reconstruction Model (LRM) that predicts the 3D model of an object from a single input image within just 5 seconds.
LRM adopts a highly scalable transformer-based architecture with 500 million learnable parameters to directly predict a neural radiance field (NeRF) from the input image.
We train our model in an end-to-end manner on massive multi-view data containing around 1 million objects.
arXiv Detail & Related papers (2023-11-08T00:03:52Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Synthetic Image Data for Deep Learning [0.294944680995069]
Realistic synthetic image data rendered from 3D models can be used to augment image sets and train image classification semantic segmentation models.
We show how high quality physically-based rendering and domain randomization can efficiently create a large synthetic dataset based on production 3D CAD models of a real vehicle.
arXiv Detail & Related papers (2022-12-12T20:28:13Z) - Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Simple and Effective Synthesis of Indoor 3D Scenes [78.95697556834536]
We study the problem of immersive 3D indoor scenes from one or more images.
Our aim is to generate high-resolution images and videos from novel viewpoints.
We propose an image-to-image GAN that maps directly from reprojections of incomplete point clouds to full high-resolution RGB-D images.
arXiv Detail & Related papers (2022-04-06T17:54:46Z) - SDF-SRN: Learning Signed Distance 3D Object Reconstruction from Static
Images [44.78174845839193]
Recent efforts have turned to learning 3D reconstruction without 3D supervision from RGB images with annotated 2D silhouettes.
These techniques still require multi-view annotations of the same object instance during training.
We propose SDF-SRN, an approach that requires only a single view of objects at training time.
arXiv Detail & Related papers (2020-10-20T17:59:47Z) - Intrinsic Autoencoders for Joint Neural Rendering and Intrinsic Image
Decomposition [67.9464567157846]
We propose an autoencoder for joint generation of realistic images from synthetic 3D models while simultaneously decomposing real images into their intrinsic shape and appearance properties.
Our experiments confirm that a joint treatment of rendering and decomposition is indeed beneficial and that our approach outperforms state-of-the-art image-to-image translation baselines both qualitatively and quantitatively.
arXiv Detail & Related papers (2020-06-29T12:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.