論文の概要: Automated Question Generation for Science Tests in Arabic Language Using NLP Techniques
- arxiv url: http://arxiv.org/abs/2406.08520v1
- Date: Tue, 11 Jun 2024 20:27:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:37:00.739207
- Title: Automated Question Generation for Science Tests in Arabic Language Using NLP Techniques
- Title(参考訳): NLP技術を用いたアラビア語の科学実験のための自動質問生成
- Authors: Mohammad Tami, Huthaifa I. Ashqar, Mohammed Elhenawy,
- Abstract要約: 本研究は,3段階のプロセス上に構築されたイノベーティブなアラビア質問生成システムを提案する。
提案手法と結果は83.50%の精度、78.68%のリコール、80.95%のFlスコアを示している。
- 参考スコア(独自算出の注目度): 5.233512464561313
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Question generation for education assessments is a growing field within artificial intelligence applied to education. These question-generation tools have significant importance in the educational technology domain, such as intelligent tutoring systems and dialogue-based platforms. The automatic generation of assessment questions, which entail clear-cut answers, usually relies on syntactical and semantic indications within declarative sentences, which are then transformed into questions. Recent research has explored the generation of assessment educational questions in Arabic. The reported performance has been adversely affected by inherent errors, including sentence parsing inaccuracies, name entity recognition issues, and errors stemming from rule-based question transformation. Furthermore, the complexity of lengthy Arabic sentences has contributed to these challenges. This research presents an innovative Arabic question-generation system built upon a three-stage process: keywords and key phrases extraction, question generation, and subsequent ranking. The aim is to tackle the difficulties associated with automatically generating assessment questions in the Arabic language. The proposed approach and results show a precision of 83.50%, a recall of 78.68%, and an Fl score of 80.95%, indicating the framework high efficiency. Human evaluation further confirmed the model efficiency, receiving an average rating of 84%.
- Abstract(参考訳): 教育評価のための質問生成は、教育に応用される人工知能における成長分野である。
これらの質問生成ツールは、インテリジェント・チュータリングシステムや対話型プラットフォームなど、教育技術分野において重要な役割を担っている。
明確な答えを必要とする評価質問の自動生成は、通常、宣言文内の構文的および意味的な指示に依存し、質問に変換される。
最近の研究は、アラビア語における評価教育問題の発生を探求している。
報告された性能は、文解析の不正確さ、名前の認識の問題、ルールベースの質問変換に起因する誤りなど、固有の誤りによって悪影響を受けている。
さらに、長大なアラビア語文の複雑さがこれらの課題に寄与している。
本研究は,キーワードとキーフレーズ抽出,質問生成,その後のランク付けという3段階のプロセスに基づいて,アラビア語の革新的な質問生成システムを提案する。
本研究の目的は,アラビア語における評価質問の自動生成に関わる課題に対処することである。
提案手法と結果から,83.50%の精度,78.68%のリコール,80.95%のFlスコアが得られた。
人的評価によりモデルの有効性が確認され、平均評価は84%となった。
関連論文リスト
- FairytaleQA Translated: Enabling Educational Question and Answer Generation in Less-Resourced Languages [0.0]
本稿では,幼児の物語理解能力の評価と向上を目的とした,有名なQAデータセットであるFairytaleQAの機械翻訳版を紹介する。
我々は、翻訳データセット内の質問生成(QG)タスクとQAタスクのベンチマークを確立するために、微調整された、控えめなスケールのモデルを採用している。
本稿では,質問応答対の生成モデルを提案し,質問適合性,回答可能性,妥当性,子どもの適合性などの品質指標を取り入れた評価を行った。
論文 参考訳(メタデータ) (2024-06-06T16:31:47Z) - Automatic assessment of text-based responses in post-secondary
education: A systematic review [0.0]
教育におけるテキストベースの反応の迅速な評価とフィードバックの自動化には大きな可能性がある。
近年,テキストによる自動評価システムがどのように開発され,教育に応用されているかを理解するために,三つの研究課題が検討されている。
この体系的なレビューは、テキストベースのアセスメントシステムの最近の教育応用の概要を提供する。
論文 参考訳(メタデータ) (2023-08-30T17:16:45Z) - Connecting Humanities and Social Sciences: Applying Language and Speech
Technology to Online Panel Surveys [2.0646127669654835]
オランダのパネル調査において,言語と音声技術のオープンエンド質問への適用について検討した。
実験波では、回答者は音声やキーボードを使ってオープンな質問に答えることができた。
本稿では,ASRシステムが生成した誤りを報告し,これらの誤りが下流解析に与える影響について検討する。
論文 参考訳(メタデータ) (2023-02-21T10:52:15Z) - A Feasibility Study of Answer-Unaware Question Generation for Education [14.434418277566383]
このようなシステムにおけるエラーのかなりの部分は、無関係または解釈不能な質問から生じていることを示す。
これらのモデルが原文ではなく人文要約となると、生成した質問の受理性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2022-03-16T15:16:18Z) - Pre-trained Transformer-Based Approach for Arabic Question Answering : A
Comparative Study [0.5801044612920815]
4つの読解データセットを用いて、アラビア語のQAに対する最先端の事前学習変圧器モデルの評価を行った。
我々は, AraBERTv2-baseモデル, AraBERTv0.2-largeモデル, AraELECTRAモデルの性能を微調整し, 比較した。
論文 参考訳(メタデータ) (2021-11-10T12:33:18Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
スコアリングモデルの驚くべき逆方向の脆さの原因について検討する。
のモデルとして訓練されているにもかかわらず、単語の袋のように振る舞うことを示唆している。
高い精度で試料を発生させる過敏性と過敏性を検出できる検出ベース保護モデルを提案する。
論文 参考訳(メタデータ) (2021-09-24T03:49:38Z) - Speaker-Conditioned Hierarchical Modeling for Automated Speech Scoring [60.55025339250815]
本研究では、話者条件付き階層型モデリングと呼ばれる非ネイティブASSのための新しいディープラーニング手法を提案する。
本手法では, 口腔熟練度テストが候補に対して複数の応答を評価できるという事実を生かして, 候補に対して複数の応答を評価できる。これらの応答からコンテキストを抽出し, ネットワークに付加的な話者固有のコンテキストとして与えて, 特定の応答をスコアする。
論文 参考訳(メタデータ) (2021-08-30T07:00:28Z) - NUVA: A Naming Utterance Verifier for Aphasia Treatment [49.114436579008476]
失語症(PWA)患者の治療介入に対する反応の診断とモニタリングの両立のための画像命名タスクを用いた音声性能評価
本稿では,失語症脳卒中患者の「正しい」と「正しくない」を分類する深層学習要素を組み込んだ発話検証システムであるNUVAについて述べる。
イギリス系英語8ヶ国語でのテストでは、システムの性能精度は83.6%から93.6%の範囲であり、10倍のクロスバリデーション平均は89.5%であった。
論文 参考訳(メタデータ) (2021-02-10T13:00:29Z) - My Teacher Thinks The World Is Flat! Interpreting Automatic Essay
Scoring Mechanism [71.34160809068996]
最近の研究では、自動スコアリングシステムが常識的な敵対的サンプルになりやすいことが示されています。
近年の解釈能力の進歩を活かし,コヒーレンスやコンテント,関連性といった特徴がスコアリングの自動化にどの程度重要であるかを見出す。
また、モデルが意味的に世界知識や常識に基づかないことから、世界のような虚偽の事実を追加することは、それを減らすよりもむしろスコアを増加させる。
論文 参考訳(メタデータ) (2020-12-27T06:19:20Z) - Curious Case of Language Generation Evaluation Metrics: A Cautionary
Tale [52.663117551150954]
イメージキャプションや機械翻訳などのタスクを評価するデファクトメトリクスとして、いくつかの一般的な指標が残っている。
これは、使いやすさが原因でもあり、また、研究者がそれらを見て解釈する方法を知りたがっているためでもある。
本稿では,モデルの自動評価方法について,コミュニティにより慎重に検討するよう促す。
論文 参考訳(メタデータ) (2020-10-26T13:57:20Z) - Evaluating Factuality in Generation with Dependency-level Entailment [57.5316011554622]
本稿では,依存弧のレベルで分解するエンテーメントの新たな定式化を提案する。
このデータに基づいて訓練された依存関係弧包含モデルにより,文レベルの手法よりもパラフレーズ化や要約における現実的不整合を識別できることが示されている。
論文 参考訳(メタデータ) (2020-10-12T06:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。