Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning
- URL: http://arxiv.org/abs/2406.08554v1
- Date: Wed, 12 Jun 2024 18:00:09 GMT
- Title: Quantum Hardware-Enabled Molecular Dynamics via Transfer Learning
- Authors: Abid Khan, Prateek Vaish, Yaoqi Pang, Nikhil Kowshik, Michael S. Chen, Clay H. Batton, Grant M. Rotskoff, J. Wayne Mullinax, Bryan K. Clark, Brenda M. Rubenstein, Norm M. Tubman,
- Abstract summary: We propose a new path forward for molecular dynamics simulations on quantum hardware.
By combining transfer learning with techniques for building machine-learned potential energy surfaces, we propose a new path forward.
We demonstrate this approach by training machine learning models to predict a molecule's potential energy using Behler-Parrinello neural networks.
- Score: 1.9144534010016192
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to perform ab initio molecular dynamics simulations using potential energies calculated on quantum computers would allow virtually exact dynamics for chemical and biochemical systems, with substantial impacts on the fields of catalysis and biophysics. However, noisy hardware, the costs of computing gradients, and the number of qubits required to simulate large systems present major challenges to realizing the potential of dynamical simulations using quantum hardware. Here, we demonstrate that some of these issues can be mitigated by recent advances in machine learning. By combining transfer learning with techniques for building machine-learned potential energy surfaces, we propose a new path forward for molecular dynamics simulations on quantum hardware. We use transfer learning to reduce the number of energy evaluations that use quantum hardware by first training models on larger, less accurate classical datasets and then refining them on smaller, more accurate quantum datasets. We demonstrate this approach by training machine learning models to predict a molecule's potential energy using Behler-Parrinello neural networks. When successfully trained, the model enables energy gradient predictions necessary for dynamics simulations that cannot be readily obtained directly from quantum hardware. To reduce the quantum resources needed, the model is initially trained with data derived from low-cost techniques, such as Density Functional Theory, and subsequently refined with a smaller dataset obtained from the optimization of the Unitary Coupled Cluster ansatz. We show that this approach significantly reduces the size of the quantum training dataset while capturing the high accuracies needed for quantum chemistry simulations.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Extreme Learning of molecular potential energy surfaces and force fields [5.13730975608994]
A quantum neural network is used to learn the potential energy surface and force field of molecular systems.
This particular supervised learning routine allows for resource-efficient training, consisting of a simple linear regression performed on a classical computer.
We have tested a setup that can be used to study molecules of any dimension and is optimized for immediate use on NISQ devices.
Compared to other supervised learning routines, the proposed setup requires minimal quantum resources, making it feasible for direct implementation on quantum platforms.
arXiv Detail & Related papers (2024-06-20T18:00:01Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Extending the reach of quantum computing for materials science with
machine learning potentials [0.3352108528371308]
We propose a strategy to extend the scope of quantum computational methods to large scale simulations using a machine learning potential.
We investigate the trainability of a machine learning potential selecting various sources of noise.
We construct the first machine learning potential from data computed on actual IBM Quantum processors for a hydrogen molecule.
arXiv Detail & Related papers (2022-03-14T15:59:30Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Holographic dynamics simulations with a trapped ion quantum computer [0.0]
We demonstrate and benchmark a new scalable quantum simulation paradigm.
Using a Honeywell trapped ion quantum processor, we simulate the non-integrable dynamics of the self-dual kicked Ising model.
Results suggest that quantum tensor network methods, together with state-of-the-art quantum processor capabilities, enable a viable path to practical quantum advantage in the near term.
arXiv Detail & Related papers (2021-05-19T18:00:02Z) - Simulating Quantum Materials with Digital Quantum Computers [55.41644538483948]
Digital quantum computers (DQCs) can efficiently perform quantum simulations that are otherwise intractable on classical computers.
The aim of this review is to provide a summary of progress made towards achieving physical quantum advantage.
arXiv Detail & Related papers (2021-01-21T20:10:38Z) - Simulating Energy Transfer in Molecular Systems with Digital Quantum
Computers [8.271013526496906]
Quantum computers have the potential to simulate chemical systems beyond the capability of classical computers.
We extend near-term quantum simulations of chemistry to time-dependent processes by simulating energy transfer in organic semiconducting molecules.
Our approach opens up new opportunities for modeling quantum dynamics in chemical, biological and material systems with quantum computers.
arXiv Detail & Related papers (2021-01-18T05:08:05Z) - Digital quantum simulation of molecular dynamics and control [0.0]
We study how quantum computers could be employed to design optimally-shaped fields to control molecular systems.
We introduce a hybrid algorithm that utilizes a quantum computer for simulating the field-induced quantum dynamics of a molecular system in time.
Numerical illustrations are then presented that explicitly treat paradigmatic vibrational and rotational control problems.
arXiv Detail & Related papers (2020-02-28T00:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.