論文の概要: Noise-Aware Differentially Private Regression via Meta-Learning
- arxiv url: http://arxiv.org/abs/2406.08569v1
- Date: Wed, 12 Jun 2024 18:11:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:27:16.688031
- Title: Noise-Aware Differentially Private Regression via Meta-Learning
- Title(参考訳): メタラーニングによる雑音認識の個人的回帰
- Authors: Ossi Räisä, Stratis Markou, Matthew Ashman, Wessel P. Bruinsma, Marlon Tobaben, Antti Honkela, Richard E. Turner,
- Abstract要約: 差別化プライバシ(DP)は、ユーザのプライバシを保護するための金の標準であるが、標準のDPメカニズムはパフォーマンスを著しく損なう。
この問題を緩和する1つのアプローチは、DPがプライベートデータで学習する前にシミュレーションデータ上でモデルを事前訓練することである。
本研究では、シミュレーションデータを用いて、畳み込み条件ニューラルネットワーク(ConvCNP)と改良された機能DPメカニズムを組み合わせたメタ学習モデルをトレーニングする。
- 参考スコア(独自算出の注目度): 25.14514068630219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many high-stakes applications require machine learning models that protect user privacy and provide well-calibrated, accurate predictions. While Differential Privacy (DP) is the gold standard for protecting user privacy, standard DP mechanisms typically significantly impair performance. One approach to mitigating this issue is pre-training models on simulated data before DP learning on the private data. In this work we go a step further, using simulated data to train a meta-learning model that combines the Convolutional Conditional Neural Process (ConvCNP) with an improved functional DP mechanism of Hall et al. [2013] yielding the DPConvCNP. DPConvCNP learns from simulated data how to map private data to a DP predictive model in one forward pass, and then provides accurate, well-calibrated predictions. We compare DPConvCNP with a DP Gaussian Process (GP) baseline with carefully tuned hyperparameters. The DPConvCNP outperforms the GP baseline, especially on non-Gaussian data, yet is much faster at test time and requires less tuning.
- Abstract(参考訳): 多くの高度なアプリケーションには、ユーザのプライバシ保護と、十分に校正された正確な予測を提供するマシンラーニングモデルが必要です。
差別化プライバシ(DP)はユーザのプライバシを保護するための金の標準だが、標準のDPメカニズムは一般的にパフォーマンスを著しく損なう。
この問題を緩和する1つのアプローチは、DPがプライベートデータで学習する前にシミュレーションデータ上でモデルを事前訓練することである。
本研究では、シミュレーションデータを用いて、畳み込み条件ニューラルネットワーク(ConvCNP)と、DPConvCNPを出力する Hall et al [2013] の機能 DP メカニズムを組み合わせたメタラーニングモデルをトレーニングする。
DPConvCNPは、シミュレーションデータから1つのフォワードパスでDP予測モデルにプライベートデータをマップする方法を学び、それから正確でよく校正された予測を提供する。
我々はDPConvCNPをDP Gaussian Process (GP)ベースラインと注意深く調整されたハイパーパラメータと比較する。
DPConvCNPはGPベースライン、特に非ガウスデータよりも優れていますが、テスト時にははるかに高速で、チューニングも少ないです。
関連論文リスト
- How Private are DP-SGD Implementations? [61.19794019914523]
2種類のバッチサンプリングを使用する場合、プライバシ分析の間に大きなギャップがあることが示される。
その結果,2種類のバッチサンプリングでは,プライバシ分析の間に大きなギャップがあることが判明した。
論文 参考訳(メタデータ) (2024-03-26T13:02:43Z) - Pre-training Differentially Private Models with Limited Public Data [54.943023722114134]
ディファレンシャルプライバシ(DP)は、モデルに提供されるセキュリティの度合いを測定するための重要な手法である。
DPはまだ、最初の事前訓練段階で使用されるデータのかなりの部分を保護することができない。
公共データの10%しか利用しない新しいDP継続事前学習戦略を開発した。
ImageNet-21kのDP精度は41.5%、非DP精度は55.7%、下流タスクのPlaces365とiNaturalist-2021では60.0%である。
論文 参考訳(メタデータ) (2024-02-28T23:26:27Z) - Private Fine-tuning of Large Language Models with Zeroth-order Optimization [51.19403058739522]
差分的プライベート勾配降下(DP-SGD)により、モデルはプライバシ保護の方法でトレーニングできる。
DP-ZO(DP-ZO)は,ゼロオーダー最適化手法を民営化することで,大規模言語モデルのためのプライベートな微調整フレームワークである。
論文 参考訳(メタデータ) (2024-01-09T03:53:59Z) - Gradients Look Alike: Sensitivity is Often Overestimated in DP-SGD [44.11069254181353]
DP-SGDのリークは、一般的なベンチマークでトレーニングした場合、多くのデータポイントのプライバシが大幅に低下することを示す。
これは、敵がトレーニングデータセットを十分にコントロールしていない場合、プライバシ攻撃が多くのデータポイントに対して必ず失敗することを意味する。
論文 参考訳(メタデータ) (2023-07-01T11:51:56Z) - DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling [23.8561225168394]
ディファレンシャルプライバシ(DP)は、プライバシ保護の十分に受け入れられた標準となり、ディープニューラルネットワーク(DNN)は、機械学習において非常に成功した。
この目的のための古典的なメカニズムはDP-SGDであり、これは訓練に一般的に使用される勾配降下(SGD)の微分プライベートバージョンである。
DPISは,DP-SGDのコアのドロップイン代替として使用できる,微分プライベートなSGDトレーニングのための新しいメカニズムである。
論文 参考訳(メタデータ) (2022-10-18T07:03:14Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy(DP)は、個別のサンプルレベルのプライバシで機械学習モデルをトレーニングするための正式なフレームワークを提供する。
DP-SGDを用いたプライベートトレーニングは、個々のサンプル勾配にノイズを注入することで漏れを防ぐ。
この結果は非常に魅力的であるが,DP-SGDを用いた大規模モデルのトレーニングの計算コストは,非プライベートトレーニングよりもかなり高い。
論文 参考訳(メタデータ) (2022-05-06T01:22:20Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private(DP)学習は、テキストの大規模なディープラーニングモデルを構築する上で、限られた成功を収めている。
この性能低下は,大規模な事前学習モデルを用いることで緩和可能であることを示す。
本稿では,DP-SGDにおけるクリッピングを,サンプルごとの勾配をインスタンス化せずに実行可能にするメモリ節約手法を提案する。
論文 参考訳(メタデータ) (2021-10-12T01:45:27Z) - An Efficient DP-SGD Mechanism for Large Scale NLP Models [28.180412581994485]
自然言語理解(NLU)モデルを訓練するために使用されるデータは、住所や電話番号などのプライベート情報を含むことができる。
基礎となるモデルは、トレーニングデータに含まれるプライベート情報を公開しないことが望ましい。
プライバシ保護モデルを構築するメカニズムとして,DP-SGD(Fariially Private Gradient Descent)が提案されている。
論文 参考訳(メタデータ) (2021-07-14T15:23:27Z) - Gaussian Processes with Differential Privacy [3.934224774675743]
我々は、差分プライバシー(DP)を介して、ガウス過程(GP)に強力なプライバシー保護を加える。
我々は、スパースGP手法を用いて、既知の誘導点に関するプライベートな変分近似を公開することによってこれを達成した。
我々の実験は、十分な量のデータがあれば、強力なプライバシー保護下で正確なモデルを生成することができることを示した。
論文 参考訳(メタデータ) (2021-06-01T13:23:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。