論文の概要: FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images
- arxiv url: http://arxiv.org/abs/2406.08625v1
- Date: Wed, 12 Jun 2024 20:15:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:07:36.929760
- Title: FSBI: Deepfakes Detection with Frequency Enhanced Self-Blended Images
- Title(参考訳): FSBI:周波数強調セルフブレンド画像によるディープフェイク検出
- Authors: Ahmed Abul Hasanaath, Hamzah Luqman, Raed Katib, Saeed Anwar,
- Abstract要約: 本稿では、ディープフェイク検出のための周波数強調自己ブレンド画像手法を提案する。
提案手法はFF++とCeleb-DFデータセットで評価されている。
- 参考スコア(独自算出の注目度): 17.707379977847026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in deepfake research have led to the creation of almost perfect manipulations undetectable by human eyes and some deepfakes detection tools. Recently, several techniques have been proposed to differentiate deepfakes from realistic images and videos. This paper introduces a Frequency Enhanced Self-Blended Images (FSBI) approach for deepfakes detection. This proposed approach utilizes Discrete Wavelet Transforms (DWT) to extract discriminative features from the self-blended images (SBI) to be used for training a convolutional network architecture model. The SBIs blend the image with itself by introducing several forgery artifacts in a copy of the image before blending it. This prevents the classifier from overfitting specific artifacts by learning more generic representations. These blended images are then fed into the frequency features extractor to detect artifacts that can not be detected easily in the time domain. The proposed approach has been evaluated on FF++ and Celeb-DF datasets and the obtained results outperformed the state-of-the-art techniques with the cross-dataset evaluation protocol.
- Abstract(参考訳): ディープフェイク研究の進歩は、人間の目とディープフェイク検出ツールによって検出できないほぼ完璧な操作を生み出した。
近年,映像や映像とディープフェイクを区別する手法がいくつか提案されている。
本稿では、ディープフェイク検出のための周波数拡張自己ブレンド画像(FSBI)アプローチを提案する。
提案手法では、離散ウェーブレット変換(DWT)を用いて、畳み込みネットワークアーキテクチャモデルのトレーニングに使用する自己組織化画像(SBI)から識別特徴を抽出する。
SBIは画像をブレンドする前に、画像のコピーにいくつかの偽のアーティファクトを導入することで、イメージをそれ自体とブレンドする。
これにより、より汎用的な表現を学ぶことで、分類器が特定のアーティファクトを過度に適合させるのを防ぐことができる。
これらのブレンド画像は、周波数特徴抽出器に入力され、時間領域内で容易に検出できないアーティファクトを検出する。
提案手法はFF++とCeleb-DFのデータセットで評価され, 得られた結果から, クロスデータセット評価プロトコルを用いた最先端技術よりも優れていた。
関連論文リスト
- Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
近年の拡散モデルの発展により、自然言語のテキストプロンプトから現実的なディープフェイクの生成が可能になった。
我々は、最先端拡散モデルにより生成されたディープフェイク検出に関する体系的研究を開拓した。
論文 参考訳(メタデータ) (2023-04-02T10:25:09Z) - Deep Convolutional Pooling Transformer for Deepfake Detection [54.10864860009834]
本研究では,局所的・グローバル的に決定的な画像特徴を取り入れた深部畳み込み変換器を提案する。
具体的には,抽出した特徴を充実させ,有効性を高めるために,畳み込みプーリングと再アテンションを適用した。
提案手法は、内部実験と相互データセット実験の両方において、最先端のベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2022-09-12T15:05:41Z) - Detecting Deepfakes with Self-Blended Images [37.374772758057844]
本稿では,深度情報を検出するために,SBI(Self-blended Image)と呼ばれる新しい合成トレーニングデータを提案する。
SBIは、単一のプリスタン画像から擬似ソースとターゲットイメージを混合して生成される。
我々は,FF++,CDF,DFD,DFDC,DFDCP,FFIWデータセットの最先端手法との比較を行った。
論文 参考訳(メタデータ) (2022-04-18T15:44:35Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z) - Fake-image detection with Robust Hashing [0.0]
画像に複数の操作技術を適用した場合でも、ロバストハッシュが偽画像を堅牢に検出できるかどうかを検討する。
実験では、GANで生成された偽画像を含むさまざまなデータセットを用いて、ロバストハッシュによる偽検出が最先端のものよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-02-02T05:10:37Z) - Identifying Invariant Texture Violation for Robust Deepfake Detection [17.306386179823576]
Invariant Texture Learning frameworkは,低画質で公開されたデータセットにのみアクセスすることができる。
本手法は, 被写体から転写したテクスチャによって, 被写体表面の微視的顔のテクスチャが必然的に侵害されることを前提とした。
論文 参考訳(メタデータ) (2020-12-19T03:02:15Z) - DeepFake Detection by Analyzing Convolutional Traces [0.0]
我々は,人間の顔のディープフェイクの分析に着目し,新しい検出方法を提案する。
提案手法は, 予測最大化(EM)アルゴリズムを用いて, 基礎となる畳み込み生成過程をモデル化するための局所的特徴の集合を抽出する。
その結果、異なるアーキテクチャと対応する生成過程を区別する手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-22T09:02:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。