論文の概要: Toward Fully-End-to-End Listened Speech Decoding from EEG Signals
- arxiv url: http://arxiv.org/abs/2406.08644v1
- Date: Wed, 12 Jun 2024 21:08:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 22:07:36.905379
- Title: Toward Fully-End-to-End Listened Speech Decoding from EEG Signals
- Title(参考訳): 脳波信号の完全終端音声復号化に向けて
- Authors: Jihwan Lee, Aditya Kommineni, Tiantian Feng, Kleanthis Avramidis, Xuan Shi, Sudarsana Kadiri, Shrikanth Narayanan,
- Abstract要約: 脳波信号からの完全エンドツーエンド音声デコーディングのための新しいフレームワークであるFESDEを提案する。
提案手法は,脳波モジュールと音声モジュール,およびコネクタから構成される。
音声符号化のモデル特性を明らかにするために, きめ細かい音素解析を行った。
- 参考スコア(独自算出の注目度): 29.548052495254257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech decoding from EEG signals is a challenging task, where brain activity is modeled to estimate salient characteristics of acoustic stimuli. We propose FESDE, a novel framework for Fully-End-to-end Speech Decoding from EEG signals. Our approach aims to directly reconstruct listened speech waveforms given EEG signals, where no intermediate acoustic feature processing step is required. The proposed method consists of an EEG module and a speech module along with a connector. The EEG module learns to better represent EEG signals, while the speech module generates speech waveforms from model representations. The connector learns to bridge the distributions of the latent spaces of EEG and speech. The proposed framework is both simple and efficient, by allowing single-step inference, and outperforms prior works on objective metrics. A fine-grained phoneme analysis is conducted to unveil model characteristics of speech decoding. The source code is available here: github.com/lee-jhwn/fesde.
- Abstract(参考訳): 脳波信号からの音声復号は、脳活動が音響刺激の健全な特性を推定するためにモデル化される難しい課題である。
脳波信号からの完全エンドツーエンド音声デコーディングのための新しいフレームワークであるFESDEを提案する。
提案手法は,脳波信号による聴取波形を直接再構成することを目的としており,中間音響特徴処理ステップは不要である。
提案手法は,脳波モジュールと音声モジュール,およびコネクタから構成される。
EEGモジュールはEEG信号をより良く表現することを学び、音声モジュールはモデル表現から音声波形を生成する。
コネクタは、脳波と音声の潜在空間の分布をブリッジすることを学ぶ。
提案するフレームワークは,単一ステップの推論を可能にすることで,シンプルかつ効率的であり,従来の客観的な指標よりも優れている。
音声符号化のモデル特性を明らかにするために, きめ細かい音素解析を行った。
ソースコードは、github.com/lee-jhwn/fesdeで入手できる。
関連論文リスト
- DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding [51.32965203977845]
本稿では,連続的な音声エンコーダ出力の代わりに離散音声単位(DSU)を用いることを提案する。
提案モデルでは, 未知領域からの音声入力に対する頑健な性能と, 音声質問応答における指示追従能力を示す。
この結果から,ASRタスクとデータセットは,音声質問応答タスクの指導訓練に必須ではないことが示唆された。
論文 参考訳(メタデータ) (2024-06-13T17:28:13Z) - One model to rule them all ? Towards End-to-End Joint Speaker
Diarization and Speech Recognition [50.055765860343286]
本稿では,共同話者ダイアリゼーションと音声認識のための新しい枠組みを提案する。
このフレームワークはSLIDARと呼ばれ、任意の長さの入力を処理でき、任意の数の話者を処理できる。
AMIコーパスからの単調録音実験により, 近接話者と遠距離話者の両方の発話シナリオにおける手法の有効性が確認された。
論文 参考訳(メタデータ) (2023-10-02T23:03:30Z) - Learning Speech Representation From Contrastive Token-Acoustic
Pretraining [57.08426714676043]
本研究では、2つのエンコーダを用いて音素と音声を複数モーダル空間に導入するCTAP(Contrastive Token-Acoustic Pretraining)を提案する。
提案したCTAPモデルは、210k音声と音素ペアで訓練され、最小教師付きTS、VC、ASRを実現する。
論文 参考訳(メタデータ) (2023-09-01T12:35:43Z) - Diff-E: Diffusion-based Learning for Decoding Imagined Speech EEG [17.96977778655143]
本稿では,DDPMとDiff-Eという条件付きオートエンコーダを用いた脳波信号のデコード手法を提案する。
その結果,Diff-Eは従来の機械学習手法やベースラインモデルと比較して脳波信号の復号精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-07-26T07:12:39Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMAは、音声情報をテキストベースの大規模言語モデルに効果的に組み込む新しいアプローチである。
我々は多言語音声からテキストへの翻訳タスクの実験を行い、強いベースラインよりも大幅に改善されたことを示す。
論文 参考訳(メタデータ) (2023-07-08T06:47:58Z) - BASEN: Time-Domain Brain-Assisted Speech Enhancement Network with
Convolutional Cross Attention in Multi-talker Conditions [36.15815562576836]
時間領域単一チャネル音声強調(SE)は、マルチトーカー条件に関する事前情報なしでターゲット話者を抽出することが依然として困難である。
本稿では,脳波(EEG)を聴取者から記録した脳波を組み込んだ新しい時間領域脳波支援SEネットワーク(BASEN)を提案する。
論文 参考訳(メタデータ) (2023-05-17T06:40:31Z) - SpeechUT: Bridging Speech and Text with Hidden-Unit for Encoder-Decoder
Based Speech-Text Pre-training [106.34112664893622]
本稿では,音声エンコーダとテキストデコーダの表現を共有単位エンコーダに接続する,統一モーダル音声単位テキスト事前学習モデルであるSpeechUTを提案する。
提案するSpeechUTは,自動音声認識(ASR)と音声翻訳(ST)タスクに基づいて微調整および評価を行う。
論文 参考訳(メタデータ) (2022-10-07T17:57:45Z) - UTTS: Unsupervised TTS with Conditional Disentangled Sequential
Variational Auto-encoder [30.376259456529368]
TTS音響モデリング(AM)のためのテキストオーディオペアを必要としない、教師なし音声合成(UTTS)フレームワークを提案する。
このフレームワークは、話者の持続時間モデル、音色特徴(アイデンティティ)、TTS推論のための内容の柔軟な選択を提供する。
実験により、UTTSは人間と客観的評価によって測定された高い自然性と知性のある音声を合成できることが示されている。
論文 参考訳(メタデータ) (2022-06-06T11:51:22Z) - Synthesized Speech Detection Using Convolutional Transformer-Based
Spectrogram Analysis [16.93803259128475]
合成音声は、報告された音声信号を作成し、その信号の内容を話さない人に帰属するなど、悪質な目的に使用できる。
本稿では,合成音声検出のためのコンパクト畳み込み変換器を用いて,スペクトル形音声信号の解析を行う。
論文 参考訳(メタデータ) (2022-05-03T22:05:35Z) - JETS: Jointly Training FastSpeech2 and HiFi-GAN for End to End Text to
Speech [7.476901945542385]
本稿では、簡易な訓練パイプラインを持ち、個別に学習したモデルのカスケードを上回り、エンドツーエンドのテキスト音声合成(E2E-TTS)モデルを提案する。
提案モデルでは,アライメントモジュールを用いたFastSpeech2とHiFi-GANを併用する。
LJSpeechコーパスの実験では、提案されたモデルはESPNet2-TTSの最先端実装よりも優れていた。
論文 参考訳(メタデータ) (2022-03-31T07:25:11Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
音声理解には、入力音響信号を解析してその言語内容を理解し、予測するモデルが必要である。
大規模無注釈音声やテキストからリッチな表現を学習するために,様々な事前学習手法が提案されている。
音声と言語モジュールを協調的に事前学習するための,新しい半教師付き学習フレームワークであるSPLATを提案する。
論文 参考訳(メタデータ) (2020-10-05T19:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。