論文の概要: Introducing Diminutive Causal Structure into Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2406.08709v1
- Date: Thu, 13 Jun 2024 00:18:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:47:58.747524
- Title: Introducing Diminutive Causal Structure into Graph Representation Learning
- Title(参考訳): グラフ表現学習における最小因果構造の導入
- Authors: Hang Gao, Peng Qiao, Yifan Jin, Fengge Wu, Jiangmeng Li, Changwen Zheng,
- Abstract要約: 本稿では,グラフニューラルネット(GNN)が専門的な最小の因果構造から洞察を得ることを可能にする新しい手法を提案する。
本手法は,これらの小型因果構造のモデル表現から因果知識を抽出する。
- 参考スコア(独自算出の注目度): 19.132025125620274
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When engaging in end-to-end graph representation learning with Graph Neural Networks (GNNs), the intricate causal relationships and rules inherent in graph data pose a formidable challenge for the model in accurately capturing authentic data relationships. A proposed mitigating strategy involves the direct integration of rules or relationships corresponding to the graph data into the model. However, within the domain of graph representation learning, the inherent complexity of graph data obstructs the derivation of a comprehensive causal structure that encapsulates universal rules or relationships governing the entire dataset. Instead, only specialized diminutive causal structures, delineating specific causal relationships within constrained subsets of graph data, emerge as discernible. Motivated by empirical insights, it is observed that GNN models exhibit a tendency to converge towards such specialized causal structures during the training process. Consequently, we posit that the introduction of these specific causal structures is advantageous for the training of GNN models. Building upon this proposition, we introduce a novel method that enables GNN models to glean insights from these specialized diminutive causal structures, thereby enhancing overall performance. Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures and incorporates interchange intervention to optimize the learning process. Theoretical analysis serves to corroborate the efficacy of our proposed method. Furthermore, empirical experiments consistently demonstrate significant performance improvements across diverse datasets.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)でエンドツーエンドのグラフ表現学習を行う場合、グラフデータに固有の複雑な因果関係とルールは、真正のデータ関係を正確に把握する上で、モデルにとって非常に難しい課題となる。
提案された緩和戦略は、モデルにグラフデータに対応するルールや関係を直接統合することを含む。
しかし、グラフ表現学習の領域において、グラフデータの本質的な複雑さは、データセット全体を管理する普遍的な規則や関係をカプセル化する包括的な因果構造の導出を妨げる。
代わりに、グラフデータの制約された部分集合内で特定の因果関係を記述した、限定的な因果構造のみが識別可能である。
経験的洞察により,GNNモデルは訓練過程において,そのような特殊な因果構造に収束する傾向を示した。
その結果、これらの特定の因果構造の導入は、GNNモデルのトレーニングに有利であると仮定する。
この提案に基づいて,GNNモデルがこれらの専門的な因果構造から洞察を得られるような新しい手法を導入し,全体的な性能を向上する。
本手法は,これらの最小限の因果構造のモデル表現から因果知識を抽出し,学習過程を最適化するために相互干渉を組み込む。
理論的解析は,提案手法の有効性を裏付けるものである。
さらに、実験的な実験は、多様なデータセット間での大幅なパフォーマンス向上を一貫して示している。
関連論文リスト
- Heterophilic Graph Neural Networks Optimization with Causal Message-passing [24.796935814432892]
グラフニューラルネットワーク(GNN)における異種メッセージパッシングを因果推論を用いて捉える。
異種グラフ学習のための因果的メッセージパス探索ネットワークCausalMPを提案する。
論文 参考訳(メタデータ) (2024-11-21T03:59:07Z) - Advanced RAG Models with Graph Structures: Optimizing Complex Knowledge Reasoning and Text Generation [7.3491970177535]
本研究では,グラフニューラルネットワーク(GNN)を組み合わせたグラフ構造データ処理手法を提案する。
この結果から,本論文で提案するグラフベースRAGモデルは,品質,知識の整合性,推論能力の点で従来の世代モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-06T00:23:55Z) - Self-Supervised Graph Neural Networks for Enhanced Feature Extraction in Heterogeneous Information Networks [16.12856816023414]
本稿では,インターネットの急速な発展に伴う複雑なグラフデータ処理におけるグラフニューラルネットワーク(GNN)の適用と課題について考察する。
自己監督機構を導入することにより、グラフデータの多様性と複雑さに対する既存モデルの適合性を向上させることが期待されている。
論文 参考訳(メタデータ) (2024-10-23T07:14:37Z) - Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
本稿では,グラフ構造情報をメッセージパッシングなしで学習するグラフ構造自己コントラスト(GSSC)フレームワークを提案する。
提案するフレームワークは,構造情報を事前知識として暗黙的にのみ組み込む,MLP(Multi-Layer Perceptrons)に基づいている。
これはまず、近傍の潜在的非形式的あるいはノイズの多いエッジを取り除くために構造的スペーシングを適用し、その後、スペーシングされた近傍で構造的自己コントラストを行い、ロバストなノード表現を学ぶ。
論文 参考訳(メタデータ) (2024-09-09T12:56:02Z) - CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Improving Temporal Knowledge Graph Extrapolation Reasoning [1.6795461001108096]
時間的知識グラフ推論(TKGR)のための革新的な因果拡張グラフ表現学習フレームワークを提案する。
まず、時間グラフ列における実体と関係の進化的表現を、2つの異なる成分、すなわち因果表現と共起表現に分解する。
論文 参考訳(メタデータ) (2024-08-15T03:34:53Z) - Rethinking Causal Relationships Learning in Graph Neural Networks [24.7962807148905]
本稿では,GNNの因果学習能力を高めるために,軽量で適応可能なGNNモジュールを提案する。
提案モジュールの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-12-15T08:54:32Z) - GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Graph Information Bottleneck [77.21967740646784]
グラフニューラルネットワーク(GNN)は、ネットワーク構造とノード機能から情報を融合する表現的な方法を提供する。
GIBは、一般的なInformation Bottleneck (IB) を継承し、与えられたタスクに対する最小限の表現を学習することを目的としている。
提案したモデルが最先端のグラフ防御モデルよりも堅牢であることを示す。
論文 参考訳(メタデータ) (2020-10-24T07:13:00Z) - Structural Landmarking and Interaction Modelling: on Resolution Dilemmas
in Graph Classification [50.83222170524406]
解法ジレンマの統一概念に基づくグラフ分類における本質的難易度の研究」
構造ランドマークと相互作用モデリングのためのインダクティブニューラルネットワークモデルSLIM'を提案する。
論文 参考訳(メタデータ) (2020-06-29T01:01:42Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
本稿では,テンソルで表されるグラフの集合に関連するデータから,スケーラブルな半教師付き学習(SSL)を実現するためのテンソルグラフ畳み込みネットワーク(TGCN)を提案する。
提案アーキテクチャは、標準的なGCNと比較して大幅に性能が向上し、最先端の敵攻撃に対処し、タンパク質間相互作用ネットワーク上でのSSL性能が著しく向上する。
論文 参考訳(メタデータ) (2020-03-15T02:33:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。