論文の概要: ToSA: Token Selective Attention for Efficient Vision Transformers
- arxiv url: http://arxiv.org/abs/2406.08816v1
- Date: Thu, 13 Jun 2024 05:17:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 21:18:27.686722
- Title: ToSA: Token Selective Attention for Efficient Vision Transformers
- Title(参考訳): ToSA:効率的な視覚変換器のためのToken Selective Attention
- Authors: Manish Kumar Singh, Rajeev Yasarla, Hong Cai, Mingu Lee, Fatih Porikli,
- Abstract要約: ToSAはトークン選択型アテンションアプローチで、コンバータ層をスキップできるトークンだけでなく、参加する必要のあるトークンも識別できる。
ToSAは,ImageNet分類ベンチマークの精度を維持しながら,計算コストを大幅に削減できることを示す。
- 参考スコア(独自算出の注目度): 50.13756218204456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel token selective attention approach, ToSA, which can identify tokens that need to be attended as well as those that can skip a transformer layer. More specifically, a token selector parses the current attention maps and predicts the attention maps for the next layer, which are then used to select the important tokens that should participate in the attention operation. The remaining tokens simply bypass the next layer and are concatenated with the attended ones to re-form a complete set of tokens. In this way, we reduce the quadratic computation and memory costs as fewer tokens participate in self-attention while maintaining the features for all the image patches throughout the network, which allows it to be used for dense prediction tasks. Our experiments show that by applying ToSA, we can significantly reduce computation costs while maintaining accuracy on the ImageNet classification benchmark. Furthermore, we evaluate on the dense prediction task of monocular depth estimation on NYU Depth V2, and show that we can achieve similar depth prediction accuracy using a considerably lighter backbone with ToSA.
- Abstract(参考訳): 本稿では,新しいトークン選択型アテンションアプローチであるToSAを提案する。
具体的には、トークンセレクタが現在のアテンションマップを解析し、次のレイヤのアテンションマップを予測する。
残りのトークンは単純に次のレイヤをバイパスし、関連するトークンと結合して完全なトークンの集合を再構成する。
このようにして、ネットワーク全体にわたるすべてのイメージパッチの機能を維持しながら、トークンが自己アテンションに参加することが少なくなるにつれて、二次計算とメモリコストを削減し、より密集した予測タスクに使用できるようにした。
実験の結果,ToSAを適用すれば,ImageNet分類ベンチマークの精度を維持しながら,計算コストを大幅に削減できることがわかった。
さらに,NYU深度V2における単眼深度推定の高密度予測タスクについて検討し,ToSAを用いたより軽量なバックボーンを用いて類似した深度予測精度が得られることを示す。
関連論文リスト
- LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens for Remote Sensing Image Interpretation [37.72775203647514]
本稿では,学習可能なメタトークンを用いてスパーストークンを定式化し,キー情報を効果的に学習し,推論速度を向上させることを提案する。
視覚トークンが密集した早期にデュアル・クロス・アテンション(DCA)を用いることで,様々な大きさの階層型アーキテクチャLeMeViTが得られる。
分類と密接な予測タスクの実験結果は、LeMeViTがベースラインモデルと比較して1.7倍のスピードアップ、少ないパラメータ、競争性能を持っていることを示している。
論文 参考訳(メタデータ) (2024-05-16T03:26:06Z) - Object Recognition as Next Token Prediction [99.40793702627396]
オブジェクト認識を次のトークン予測として提案する。
その考え方は、画像埋め込みからフォームラベルへのテキストトークンの自動回帰予測を行う言語デコーダを適用することである。
論文 参考訳(メタデータ) (2023-12-04T18:58:40Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
視覚変換器 (ViT) は、その優れた性能のため、視覚タスクの一般的なアーキテクチャとして登場した。
本稿では,画像の異なる領域に対して,その重要度に応じて適応分解能を適用することを提案する。
提案手法を3つの異なるデータセット上で評価し,有望な性能を観察する。
論文 参考訳(メタデータ) (2023-11-02T12:48:43Z) - DenseDINO: Boosting Dense Self-Supervised Learning with Token-Based
Point-Level Consistency [12.881617910150688]
本稿では,DenseDINOと呼ばれる自己教師型学習のためのトランスフォーマーフレームワークを提案する。
具体的には、DenseDINOは参照トークンと呼ばれるいくつかの追加の入力トークンを導入し、ポイントレベルの特徴と以前の位置とを一致させる。
提案手法は,バニラDINOと比較して,ImageNetの分類で評価すると,競争性能が向上する。
論文 参考訳(メタデータ) (2023-06-06T15:04:45Z) - Token-Label Alignment for Vision Transformers [93.58540411138164]
データ混合戦略(例えば、CutMix)は、畳み込みニューラルネットワーク(CNN)の性能を大幅に改善する能力を示している。
我々は,データ混合戦略の可能性を抑制するトークン変動現象を同定する。
本稿では,各トークンのラベルを保持するために,変換されたトークンと元のトークンとの対応をトレースするトークンラベルアライメント(TL-Align)手法を提案する。
論文 参考訳(メタデータ) (2022-10-12T17:54:32Z) - Expediting Large-Scale Vision Transformer for Dense Prediction without
Fine-tuning [28.180891300826165]
大規模視覚変換器におけるトークンの総数を削減するために、多くの先進的なアプローチが開発されている。
2つの非パラメトリック演算子、トークン数を減らすトークンクラスタリング層、トークン数を増やすトークン再構成層を提供する。
その結果、オブジェクト検出、セマンティックセグメンテーション、パノスコープセグメンテーション、インスタンスセグメンテーション、深さ推定を含む5つの密集した予測タスクが期待できる。
論文 参考訳(メタデータ) (2022-10-03T15:49:48Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
最小限のコストで適応的なスパーストークンプルーニングフレームワークを提案する。
提案手法では,DeiT-Sのスループットを50%向上し,トップ1の精度は0.2%低下した。
論文 参考訳(メタデータ) (2022-09-28T03:07:32Z) - PSViT: Better Vision Transformer via Token Pooling and Attention Sharing [114.8051035856023]
トークンプーリングとアテンション共有を併用したPSViTを提案する。
実験の結果,提案手法は画像ネット分類の精度を最大6.6%向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-08-07T11:30:54Z) - TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? [89.17394772676819]
適応的に学習したトークンに頼った新しい視覚表現学習を導入する。
本実験は,画像認識と画像認識の両タスクにおいて,いくつかの困難なベンチマークで高い性能を示した。
論文 参考訳(メタデータ) (2021-06-21T17:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。