ToSA: Token Selective Attention for Efficient Vision Transformers
- URL: http://arxiv.org/abs/2406.08816v1
- Date: Thu, 13 Jun 2024 05:17:21 GMT
- Title: ToSA: Token Selective Attention for Efficient Vision Transformers
- Authors: Manish Kumar Singh, Rajeev Yasarla, Hong Cai, Mingu Lee, Fatih Porikli,
- Abstract summary: ToSA is a token selective attention approach that can identify tokens that need to be attended as well as those that can skip a transformer layer.
We show that ToSA can significantly reduce computation costs while maintaining accuracy on the ImageNet classification benchmark.
- Score: 50.13756218204456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a novel token selective attention approach, ToSA, which can identify tokens that need to be attended as well as those that can skip a transformer layer. More specifically, a token selector parses the current attention maps and predicts the attention maps for the next layer, which are then used to select the important tokens that should participate in the attention operation. The remaining tokens simply bypass the next layer and are concatenated with the attended ones to re-form a complete set of tokens. In this way, we reduce the quadratic computation and memory costs as fewer tokens participate in self-attention while maintaining the features for all the image patches throughout the network, which allows it to be used for dense prediction tasks. Our experiments show that by applying ToSA, we can significantly reduce computation costs while maintaining accuracy on the ImageNet classification benchmark. Furthermore, we evaluate on the dense prediction task of monocular depth estimation on NYU Depth V2, and show that we can achieve similar depth prediction accuracy using a considerably lighter backbone with ToSA.
Related papers
- LeMeViT: Efficient Vision Transformer with Learnable Meta Tokens for Remote Sensing Image Interpretation [37.72775203647514]
This paper proposes to use learnable meta tokens to formulate sparse tokens, which effectively learn key information and improve inference speed.
By employing Dual Cross-Attention (DCA) in the early stages with dense visual tokens, we obtain the hierarchical architecture LeMeViT with various sizes.
Experimental results in classification and dense prediction tasks show that LeMeViT has a significant $1.7 times$ speedup, fewer parameters, and competitive performance compared to the baseline models.
arXiv Detail & Related papers (2024-05-16T03:26:06Z) - Object Recognition as Next Token Prediction [99.40793702627396]
We present an approach to pose object recognition as next token prediction.
The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels.
arXiv Detail & Related papers (2023-12-04T18:58:40Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - DenseDINO: Boosting Dense Self-Supervised Learning with Token-Based
Point-Level Consistency [12.881617910150688]
We propose a transformer framework for self-supervised learning called DenseDINO to learn dense visual representations.
Specifically, DenseDINO introduces some extra input tokens called reference tokens to match the point-level features with the position prior.
Compared with the vanilla DINO, our approach obtains competitive performance when evaluated on classification in ImageNet.
arXiv Detail & Related papers (2023-06-06T15:04:45Z) - Token-Label Alignment for Vision Transformers [93.58540411138164]
Data mixing strategies (e.g., CutMix) have shown the ability to greatly improve the performance of convolutional neural networks (CNNs)
We identify a token fluctuation phenomenon that has suppressed the potential of data mixing strategies.
We propose a token-label alignment (TL-Align) method to trace the correspondence between transformed tokens and the original tokens to maintain a label for each token.
arXiv Detail & Related papers (2022-10-12T17:54:32Z) - Expediting Large-Scale Vision Transformer for Dense Prediction without
Fine-tuning [28.180891300826165]
Many advanced approaches have been developed to reduce the total number of tokens in large-scale vision transformers.
We present two non-parametric operators, a token clustering layer to decrease the number of tokens and a token reconstruction layer to increase the number of tokens.
Results are promising on five dense prediction tasks, including object detection, semantic segmentation, panoptic segmentation, instance segmentation, and depth estimation.
arXiv Detail & Related papers (2022-10-03T15:49:48Z) - Adaptive Sparse ViT: Towards Learnable Adaptive Token Pruning by Fully
Exploiting Self-Attention [36.90363317158731]
We propose an adaptive sparse token pruning framework with a minimal cost.
Our method improves the throughput of DeiT-S by 50% and brings only 0.2% drop in top-1 accuracy.
arXiv Detail & Related papers (2022-09-28T03:07:32Z) - PSViT: Better Vision Transformer via Token Pooling and Attention Sharing [114.8051035856023]
We propose a PSViT: a ViT with token Pooling and attention Sharing to reduce the redundancy.
Experimental results show that the proposed scheme can achieve up to 6.6% accuracy improvement in ImageNet classification.
arXiv Detail & Related papers (2021-08-07T11:30:54Z) - TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? [89.17394772676819]
We introduce a novel visual representation learning which relies on a handful of adaptively learned tokens.
Our experiments demonstrate strong performance on several challenging benchmarks for both image and video recognition tasks.
arXiv Detail & Related papers (2021-06-21T17:55:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.