論文の概要: SA-DQAS: Self-attention Enhanced Differentiable Quantum Architecture Search
- arxiv url: http://arxiv.org/abs/2406.08882v2
- Date: Thu, 11 Jul 2024 09:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 22:28:14.730798
- Title: SA-DQAS: Self-attention Enhanced Differentiable Quantum Architecture Search
- Title(参考訳): SA-DQAS: 自己アテンションを増強した微分可能な量子アーキテクチャ検索
- Authors: Yize Sun, Jiarui Liu, Zixin Wu, Zifeng Ding, Yunpu Ma, Thomas Seidl, Volker Tresp,
- Abstract要約: SA-DQASは、勾配に基づく微分可能な量子アーキテクチャ探索(DQAS)を自己アテンション機構で拡張するフレームワークである。
我々の研究は、DQASとの自己意識の初めての統合に成功したことを実証している。
- 参考スコア(独自算出の注目度): 24.24122257925106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce SA-DQAS in this paper, a novel framework that enhances the gradient-based Differentiable Quantum Architecture Search (DQAS) with a self-attention mechanism, aimed at optimizing circuit design for Quantum Machine Learning (QML) challenges. Analogous to a sequence of words in a sentence, a quantum circuit can be viewed as a sequence of placeholders containing quantum gates. Unlike DQAS, each placeholder is independent, while the self-attention mechanism in SA-DQAS helps to capture relation and dependency information among each operation candidate placed on placeholders in a circuit. To evaluate and verify, we conduct experiments on job-shop scheduling problems (JSSP), Max-cut problems, and quantum fidelity. Incorporating self-attention improves the stability and performance of the resulting quantum circuits and refines their structural design with higher noise resilience and fidelity. Our research demonstrates the first successful integration of self-attention with DQAS.
- Abstract(参考訳): 本稿では、量子機械学習(QML)の課題に対して回路設計を最適化することを目的とした自己アテンション機構により、勾配に基づく微分量子アーキテクチャ探索(DQAS)を強化する新しいフレームワークであるSA-DQASを紹介する。
文中の単語の列に類似して、量子回路は量子ゲートを含むプレースホルダーの列と見なすことができる。
DQASとは異なり、各プレースホルダーは独立しており、SA-DQASの自己保持機構は、回路内のプレースホルダーに配置された各操作候補間の関係や依存情報をキャプチャするのに役立つ。
本研究では,ジョブショップスケジューリング問題 (JSSP) , 最大カット問題, 量子忠実度に関する実験を行った。
自己注意を組み込むことで、結果の量子回路の安定性と性能が向上し、高いノイズ耐性と忠実さで構造設計が洗練される。
我々の研究は、DQASとの自己意識の初めての統合に成功したことを実証している。
関連論文リスト
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Reinforcement learning-assisted quantum architecture search for
variational quantum algorithms [0.0]
この論文は、ノイズの多い量子ハードウェアにおける機能量子回路の同定に焦点を当てている。
本稿では, テンソルを用いた量子回路の符号化, 環境力学の制約により, 可能な回路の探索空間を効率的に探索する。
様々なVQAを扱う際、我々のRLベースのQASは既存のQASよりも優れています。
論文 参考訳(メタデータ) (2024-02-21T12:30:39Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
SAM(Self-Attention Mechanism)は機能の内部接続を捉えるのに長けている。
短期量子デバイスにおける画像分類タスクに対して,新しい量子自己注意ネットワーク(QSAN)を提案する。
論文 参考訳(メタデータ) (2022-07-14T12:22:51Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z) - Differentiable Quantum Architecture Search [15.045985536395479]
微分可能量子アーキテクチャ探索(DQAS)の一般的なフレームワークを提案する。
DQASは、エンドツーエンドの微分可能な方法で量子回路の自動設計を可能にする。
論文 参考訳(メタデータ) (2020-10-16T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。