Robust Information Retrieval
- URL: http://arxiv.org/abs/2406.08891v1
- Date: Thu, 13 Jun 2024 07:44:21 GMT
- Title: Robust Information Retrieval
- Authors: Yu-An Liu, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke,
- Abstract summary: robustness of an information retrieval system is increasingly attracting attention.
This tutorial aims to generate broader attention to robustness issues in IR, facilitate an understanding of the relevant literature, and lower the barrier to entry for interested researchers and practitioners.
- Score: 77.87996131013546
- License:
- Abstract: Beyond effectiveness, the robustness of an information retrieval (IR) system is increasingly attracting attention. When deployed, a critical technology such as IR should not only deliver strong performance on average but also have the ability to handle a variety of exceptional situations. In recent years, research into the robustness of IR has seen significant growth, with numerous researchers offering extensive analyses and proposing myriad strategies to address robustness challenges. In this tutorial, we first provide background information covering the basics and a taxonomy of robustness in IR. Then, we examine adversarial robustness and out-of-distribution (OOD) robustness within IR-specific contexts, extensively reviewing recent progress in methods to enhance robustness. The tutorial concludes with a discussion on the robustness of IR in the context of large language models (LLMs), highlighting ongoing challenges and promising directions for future research. This tutorial aims to generate broader attention to robustness issues in IR, facilitate an understanding of the relevant literature, and lower the barrier to entry for interested researchers and practitioners.
Related papers
- Robust Neural Information Retrieval: An Adversarial and Out-of-distribution Perspective [111.58315434849047]
robustness of neural information retrieval models (IR) models has garnered significant attention.
We view the robustness of IR to be a multifaceted concept, emphasizing its necessity against adversarial attacks, out-of-distribution (OOD) scenarios and performance variance.
We provide an in-depth discussion of existing methods, datasets, and evaluation metrics, shedding light on challenges and future directions in the era of large language models.
arXiv Detail & Related papers (2024-07-09T16:07:01Z) - Can you trust your explanations? A robustness test for feature attribution methods [42.36530107262305]
The field of Explainable AI (XAI) has seen a rapid growth but the usage of its techniques has at times led to unexpected results.
We will show how leveraging manifold hypothesis and ensemble approaches can be beneficial to an in-depth analysis of the robustness.
arXiv Detail & Related papers (2024-06-20T14:17:57Z) - Opening the Black-Box: A Systematic Review on Explainable AI in Remote Sensing [51.524108608250074]
Black-box machine learning approaches have become a dominant modeling paradigm for knowledge extraction in remote sensing.
We perform a systematic review to identify the key trends in the field and shed light on novel explainable AI approaches.
We also give a detailed outlook on the challenges and promising research directions.
arXiv Detail & Related papers (2024-02-21T13:19:58Z) - Search Still Matters: Information Retrieval in the Era of Generative AI [1.68609633200389]
This perspective explores the use of generative AI in the context of the motivations, considerations, and outcomes of the IR process.
Users of such systems, particularly academics, have concerns for authoritativeness, timeliness, and contextualization of search.
arXiv Detail & Related papers (2023-11-30T13:36:21Z) - Information Retrieval Meets Large Language Models: A Strategic Report
from Chinese IR Community [180.28262433004113]
Large Language Models (LLMs) have demonstrated exceptional capabilities in text understanding, generation, and knowledge inference.
LLMs and humans form a new technical paradigm that is more powerful for information seeking.
To thoroughly discuss the transformative impact of LLMs on IR research, the Chinese IR community conducted a strategic workshop in April 2023.
arXiv Detail & Related papers (2023-07-19T05:23:43Z) - A Comprehensive Survey of Continual Learning: Theory, Method and
Application [64.23253420555989]
We present a comprehensive survey of continual learning, seeking to bridge the basic settings, theoretical foundations, representative methods, and practical applications.
We summarize the general objectives of continual learning as ensuring a proper stability-plasticity trade-off and an adequate intra/inter-task generalizability in the context of resource efficiency.
arXiv Detail & Related papers (2023-01-31T11:34:56Z) - A.I. Robustness: a Human-Centered Perspective on Technological
Challenges and Opportunities [8.17368686298331]
Robustness of Artificial Intelligence (AI) systems remains elusive and constitutes a key issue that impedes large-scale adoption.
We introduce three concepts to organize and describe the literature both from a fundamental and applied point of view.
We highlight the central role of humans in evaluating and enhancing AI robustness, considering the necessary knowledge humans can provide.
arXiv Detail & Related papers (2022-10-17T10:00:51Z) - Optimism in the Face of Adversity: Understanding and Improving Deep
Learning through Adversarial Robustness [63.627760598441796]
We provide an in-depth review of the field of adversarial robustness in deep learning.
We highlight the intuitive connection between adversarial examples and the geometry of deep neural networks.
We provide an overview of the main emerging applications of adversarial robustness beyond security.
arXiv Detail & Related papers (2020-10-19T16:03:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.