Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
- URL: http://arxiv.org/abs/2504.03151v1
- Date: Fri, 04 Apr 2025 04:04:56 GMT
- Title: Why Reasoning Matters? A Survey of Advancements in Multimodal Reasoning (v1)
- Authors: Jing Bi, Susan Liang, Xiaofei Zhou, Pinxin Liu, Junjia Guo, Yunlong Tang, Luchuan Song, Chao Huang, Guangyu Sun, Jinxi He, Jiarui Wu, Shu Yang, Daoan Zhang, Chen Chen, Lianggong Bruce Wen, Zhang Liu, Jiebo Luo, Chenliang Xu,
- Abstract summary: Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks.<n>Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains.<n>This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs.
- Score: 66.51642638034822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning is central to human intelligence, enabling structured problem-solving across diverse tasks. Recent advances in large language models (LLMs) have greatly enhanced their reasoning abilities in arithmetic, commonsense, and symbolic domains. However, effectively extending these capabilities into multimodal contexts-where models must integrate both visual and textual inputs-continues to be a significant challenge. Multimodal reasoning introduces complexities, such as handling conflicting information across modalities, which require models to adopt advanced interpretative strategies. Addressing these challenges involves not only sophisticated algorithms but also robust methodologies for evaluating reasoning accuracy and coherence. This paper offers a concise yet insightful overview of reasoning techniques in both textual and multimodal LLMs. Through a thorough and up-to-date comparison, we clearly formulate core reasoning challenges and opportunities, highlighting practical methods for post-training optimization and test-time inference. Our work provides valuable insights and guidance, bridging theoretical frameworks and practical implementations, and sets clear directions for future research.
Related papers
- Multimodal Chain-of-Thought Reasoning: A Comprehensive Survey [124.23247710880008]
multimodal CoT (MCoT) reasoning has recently garnered significant research attention.<n>Existing MCoT studies design various methodologies to address the challenges of image, video, speech, audio, 3D, and structured data.<n>We present the first systematic survey of MCoT reasoning, elucidating the relevant foundational concepts and definitions.
arXiv Detail & Related papers (2025-03-16T18:39:13Z) - Inference-Time Computations for LLM Reasoning and Planning: A Benchmark and Insights [49.42133807824413]
We examine the reasoning and planning capabilities of large language models (LLMs) in solving complex tasks.
Recent advances in inference-time techniques demonstrate the potential to enhance LLM reasoning without additional training.
OpenAI's o1 model shows promising performance through its novel use of multi-step reasoning and verification.
arXiv Detail & Related papers (2025-02-18T04:11:29Z) - LogiDynamics: Unraveling the Dynamics of Logical Inference in Large Language Model Reasoning [49.58786377307728]
This paper adopts an exploratory approach by introducing a controlled evaluation environment for analogical reasoning.<n>We analyze the comparative dynamics of inductive, abductive, and deductive inference pipelines.<n>We investigate advanced paradigms such as hypothesis selection, verification, and refinement, revealing their potential to scale up logical inference.
arXiv Detail & Related papers (2025-02-16T15:54:53Z) - Advancing Reasoning in Large Language Models: Promising Methods and Approaches [0.0]
Large Language Models (LLMs) have succeeded remarkably in various natural language processing (NLP) tasks.
Their ability to perform complex reasoning-spanning logical deduction, mathematical problem-solving, commonsense inference, and multi-step reasoning-often falls short of human expectations.
This survey provides a comprehensive review of emerging techniques enhancing reasoning in LLMs.
arXiv Detail & Related papers (2025-02-05T23:31:39Z) - A Survey of Mathematical Reasoning in the Era of Multimodal Large Language Model: Benchmark, Method & Challenges [25.82535441866882]
This survey provides the first comprehensive analysis of mathematical reasoning in the era of multimodal large language models (MLLMs)<n>We review over 200 studies published since 2021, and examine the state-of-the-art developments in Math-LLMs.<n>In particular, we explore multimodal mathematical reasoning pipeline, as well as the role of (M)LLMs and the associated methodologies.
arXiv Detail & Related papers (2024-12-16T16:21:41Z) - Fusing Physics-Driven Strategies and Cross-Modal Adversarial Learning: Toward Multi-Domain Applications [0.0]
Cross-modal adversarial learning and physics-driven methods represent a cutting-edge direction for tackling challenges in scientific computing.
This review focuses on analyzing how these two approaches can be synergistically integrated to enhance performance and robustness across diverse application domains.
arXiv Detail & Related papers (2024-11-30T03:47:17Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks.
We propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture.
Our experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance.
arXiv Detail & Related papers (2024-04-24T17:59:48Z) - Puzzle Solving using Reasoning of Large Language Models: A Survey [1.9939549451457024]
This survey examines the capabilities of Large Language Models (LLMs) in puzzle solving.
Our findings highlight the disparity between LLM capabilities and human-like reasoning.
The survey underscores the necessity for novel strategies and richer datasets to advance LLMs' puzzle-solving proficiency.
arXiv Detail & Related papers (2024-02-17T14:19:38Z) - DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning
in Language Models [28.712359821231182]
Large language models (LLMs) have made remarkable strides in such multi-step reasoning on the language modality solely by leveraging the chain of thought (CoT) to mimic human thinking.
The transfer of these advancements to multimodal contexts introduces heightened challenges, including but not limited to the impractical need for labor-intensive annotation.
This study proposes a novel DDCoT prompting that maintains a critical attitude through negative-space prompting and incorporates multimodality into reasoning.
arXiv Detail & Related papers (2023-10-25T08:03:10Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.