論文の概要: GluPredKit: Development and User Evaluation of a Standardization Software for Blood Glucose Prediction
- arxiv url: http://arxiv.org/abs/2406.08915v1
- Date: Thu, 13 Jun 2024 08:23:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:44:22.558875
- Title: GluPredKit: Development and User Evaluation of a Standardization Software for Blood Glucose Prediction
- Title(参考訳): GluPredKit:血糖予測のための標準化ソフトウェアの開発とユーザ評価
- Authors: Miriam K. Wolff, Sam Royston, Anders Lyngvi Fougner, Hans Georg Schaathun, Martin Steinert, Rune Volden,
- Abstract要約: GluPredKitは、血糖予測アルゴリズムのトレーニング、テスト、比較を標準化するために設計されたソフトウェアプラットフォームである。
この結果は、GluPredKitが標準化の課題に効果的に対応し、高いユーザビリティを提供することを示している。
- 参考スコア(独自算出の注目度): 0.5296605834401323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Blood glucose prediction is an important component of biomedical technology for managing diabetes with automated insulin delivery systems. Machine learning and deep learning algorithms hold the potential to advance this technology. However, the lack of standardized methodologies impedes direct comparisons of emerging algorithms. This study addresses this challenge by developing GluPredKit, a software platform designed to standardize the training, testing, and comparison of blood glucose prediction algorithms. GluPredKit features a modular, open-source architecture, complemented by a command-line interface, comprehensive documentation, and a video tutorial to enhance usability. To ensure the platform's effectiveness and user-friendliness, we conducted preliminary testing and a user study. In this study, four participants interacted with GluPredKit and provided feedback through the System Usability Scale (SUS) and open-ended questions. The findings indicate that GluPredKit effectively addresses the standardization challenge and offers high usability, facilitating direct comparisons between different algorithms. Additionally, it serves an educational purpose by making advanced methodologies more accessible. Future directions include continuously enhancing the software based on user feedback. We also invite community contributions to further expand GluPredKit with state-of-the-art components and foster a collaborative effort in standardizing blood glucose prediction research, leading to more comparable studies.
- Abstract(参考訳): 血糖予測は、自動インスリンデリバリーシステムで糖尿病を管理するためのバイオメディカル技術の重要な構成要素である。
機械学習とディープラーニングアルゴリズムは、この技術を前進させる可能性を秘めている。
しかし、標準化手法の欠如は、新しいアルゴリズムの直接比較を妨げている。
本研究は、血糖予測アルゴリズムのトレーニング、テスト、比較を標準化するソフトウェアプラットフォームであるGluPredKitを開発することで、この問題に対処する。
GluPredKitは,コマンドラインインターフェース,包括的なドキュメント,ユーザビリティ向上のためのビデオチュートリアルなどを備えた,モジュール形式のオープンソースアーキテクチャを備えている。
プラットフォームの有効性とユーザフレンドリ性を確保するため,予備試験とユーザスタディを実施した。
本研究では、4人の参加者がGluPredKitと対話し、SUS(System Usability Scale)とオープンエンドの質問を通じてフィードバックを提供した。
この結果は、GluPredKitが標準化の課題に効果的に対応し、高いユーザビリティを提供し、異なるアルゴリズム間の直接比較を容易にすることを示唆している。
さらに、先進的な方法論をより利用しやすくすることで、教育的な目的を果たす。
今後の方向性には、ユーザのフィードバックに基づいてソフトウェアを継続的に拡張することが含まれる。
我々はまた、GluPredKitを最先端のコンポーネントでさらに拡張し、血糖予測研究を標準化するための協力的な取り組みを促進するために、コミュニティからのコントリビューションも求めています。
関連論文リスト
- GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks [0.12564343689544843]
連続血糖モニター (Continuous glucose monitors, CGM) は、血糖値を一定間隔で測定する小さな医療機器である。
CGMデータに基づくグルコーストラジェクトリの予測は、糖尿病管理を大幅に改善する可能性を秘めている。
論文 参考訳(メタデータ) (2024-10-08T08:01:09Z) - UniCell: Universal Cell Nucleus Classification via Prompt Learning [76.11864242047074]
ユニバーサル細胞核分類フレームワーク(UniCell)を提案する。
異なるデータセットドメインから対応する病理画像のカテゴリを均一に予測するために、新しいプロンプト学習機構を採用している。
特に,本フレームワークでは,原子核検出と分類のためのエンドツーエンドアーキテクチャを採用し,フレキシブルな予測ヘッドを用いて様々なデータセットを適応する。
論文 参考訳(メタデータ) (2024-02-20T11:50:27Z) - Yet Another ICU Benchmark: A Flexible Multi-Center Framework for Clinical ML [0.7982607013768545]
Another ICU Benchmark (YAIB) は、再現性と同等の臨床ML実験を定義するためのモジュラーフレームワークである。
YAIBは、ほとんどのオープンアクセスICUデータセット(MIMIC III/IV、eICU、HiRID、AUMCdb)をサポートし、将来のICUデータセットに容易に適応できる。
データセットの選択,コホート定義,前処理が予測性能に大きな影響を及ぼすことを示す。
論文 参考訳(メタデータ) (2023-06-08T11:16:20Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
単一ステップ生成モデルは、検索プロセスを劇的に単純化し、エンドツーエンドで最適化することができる。
我々は、事前学習された生成検索モデルをCorpsBrainと名付け、コーパスに関する全ての情報が、追加のインデックスを構築することなく、そのパラメータにエンコードされる。
論文 参考訳(メタデータ) (2022-08-16T10:22:49Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - HiRID-ICU-Benchmark -- A Comprehensive Machine Learning Benchmark on
High-resolution ICU Data [0.8418021941792283]
ICU関連タスクの幅広い範囲をカバーするベンチマークの提供を目指している。
HiRIDデータセットを用いて,臨床医とのコラボレーションによって開発された複数の臨床関連タスクを定義した。
我々は,このタイプのデータに対する深層学習アプローチのいくつかの制限を強調し,現在最先端のシーケンスモデリング手法を詳細に分析する。
論文 参考訳(メタデータ) (2021-11-16T15:06:42Z) - Designing ECG Monitoring Healthcare System with Federated Transfer
Learning and Explainable AI [4.694126527114577]
我々は、ECGベースの医療アプリケーションのための連合環境で、新しい説明可能な人工知能(XAI)ベースのディープラーニングフレームワークを設計する。
提案したフレームワークは、MIT-BIH Arrhythmiaデータベースを使用してトレーニングされ、テストされた。
論文 参考訳(メタデータ) (2021-05-26T11:59:44Z) - Model-Based Reinforcement Learning for Type 1Diabetes Blood Glucose
Control [0.0]
本研究では,1型糖尿病患者のインスリン摂取量決定を支援するためのモデルベース強化学習について検討した。
提案アーキテクチャは、複数のEcho State Networksで構成され、計画のためのモデル予測コントローラと組み合わせて血糖値を予測する。
論文 参考訳(メタデータ) (2020-10-13T10:17:30Z) - Automatic Gesture Recognition in Robot-assisted Surgery with
Reinforcement Learning and Tree Search [63.07088785532908]
共同手術におけるジェスチャー分割と分類のための強化学習と木探索に基づく枠組みを提案する。
我々のフレームワークは,JIGSAWSデータセットのサチューリングタスクにおいて,精度,編集スコア,F1スコアの点で,既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2020-02-20T13:12:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。