論文の概要: Neural NeRF Compression
- arxiv url: http://arxiv.org/abs/2406.08943v1
- Date: Thu, 13 Jun 2024 09:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:44:22.519039
- Title: Neural NeRF Compression
- Title(参考訳): ニューラルネ波圧縮
- Authors: Tuan Pham, Stephan Mandt,
- Abstract要約: 最近のNeRFは、レンダリング品質とスピードを改善するために機能グリッドを利用している。
これらの表現は、大きなストレージオーバーヘッドをもたらす。
本稿では,グリッドベースNeRFモデルを効率よく圧縮する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 19.853882143024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) have emerged as powerful tools for capturing detailed 3D scenes through continuous volumetric representations. Recent NeRFs utilize feature grids to improve rendering quality and speed; however, these representations introduce significant storage overhead. This paper presents a novel method for efficiently compressing a grid-based NeRF model, addressing the storage overhead concern. Our approach is based on the non-linear transform coding paradigm, employing neural compression for compressing the model's feature grids. Due to the lack of training data involving many i.i.d scenes, we design an encoder-free, end-to-end optimized approach for individual scenes, using lightweight decoders. To leverage the spatial inhomogeneity of the latent feature grids, we introduce an importance-weighted rate-distortion objective and a sparse entropy model employing a masking mechanism. Our experimental results validate that our proposed method surpasses existing works in terms of grid-based NeRF compression efficacy and reconstruction quality.
- Abstract(参考訳): NeRF(Neural Radiance Fields)は、連続的なボリューム表現を通じて詳細な3Dシーンをキャプチャする強力なツールとして登場した。
最近のNeRFは、レンダリング品質とスピードを改善するために機能グリッドを使用しているが、これらの表現はストレージオーバーヘッドを著しく引き起こしている。
本稿では,グリッドベースのNeRFモデルを効率よく圧縮する新しい手法を提案する。
提案手法は,モデルの特徴格子の圧縮にニューラル圧縮を用いる非線形変換符号化パラダイムに基づく。
多くのi.i.dシーンを含むトレーニングデータが不足しているため、軽量デコーダを使用して、個々のシーンに対してエンコーダフリーでエンドツーエンド最適化されたアプローチを設計する。
潜在特徴格子の空間的不均一性を活用するために,マスキング機構を用いた重み付き速度歪み目標とスパースエントロピーモデルを導入する。
実験の結果,提案手法はグリッド型NeRF圧縮の有効性と再現性の観点から,既存手法よりも優れていることがわかった。
関連論文リスト
- NeRFCodec: Neural Feature Compression Meets Neural Radiance Fields for Memory-Efficient Scene Representation [22.151167286623416]
メモリ効率のよいシーン表現のための非線形変換,量子化,エントロピー符号化を統合したエンドツーエンドのNeRF圧縮フレームワークを提案する。
提案手法は既存のNeRF圧縮法より優れており、0.5MBのメモリ予算で高品質な新規ビュー合成を可能にする。
論文 参考訳(メタデータ) (2024-04-02T15:49:00Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
統一された点ベース表現に基づく新しい視覚的ローカライゼーションフレームワーク PNeRFLoc を提案する。
一方、PNeRFLocは2次元特徴点と3次元特徴点をマッチングして初期ポーズ推定をサポートする。
一方、レンダリングベースの最適化を用いた新しいビュー合成によるポーズ改善も実現している。
論文 参考訳(メタデータ) (2023-12-17T08:30:00Z) - CAwa-NeRF: Instant Learning of Compression-Aware NeRF Features [0.0]
本稿では,圧縮対応NeRF特徴量(CAwa-NeRF)の即時学習について紹介する。
提案したインスタントラーニングパイプラインは,様々な静的シーンにおいて印象的な結果が得られる。
特に、単一のオブジェクトをマスクした背景シーンでは、CAwa-NeRFはPSNR (33 dB) を損なうことなく、元のサイズの機能グリッドを6% (1.2 MB) まで圧縮し、わずかに仮想損失 (32.31 dB) の2.4% (0.53 MB) まで圧縮する。
論文 参考訳(メタデータ) (2023-10-23T08:40:44Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRFは、ベクトル量子化による暗黙の神経表現を強化するための効率的なパイプラインである。
圧縮および原スケールの両スケールでNeRFモデルを同時に最適化する,革新的なマルチスケールNeRFサンプリング方式を提案する。
我々は3次元再構成の幾何学的忠実度とセマンティックコヒーレンスを改善するためにセマンティックロス関数を組み込んだ。
論文 参考訳(メタデータ) (2023-10-23T01:41:38Z) - SHACIRA: Scalable HAsh-grid Compression for Implicit Neural
Representations [46.01969382873856]
Inlicit Neural Representation (INR)やNeural Fieldは、マルチメディア信号をエンコードする一般的なフレームワークとして登場した。
本稿では,これらの特徴グリッドを,追加のホット後のプルーニング/量子化段階を伴わずに圧縮するフレームワークであるSHACIRAを提案する。
我々のアプローチは、大規模なデータセットやドメイン固有のものを必要としない既存のINRアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-09-27T17:59:48Z) - MF-NeRF: Memory Efficient NeRF with Mixed-Feature Hash Table [62.164549651134465]
MF-NeRFは,Mixed-Featureハッシュテーブルを用いてメモリ効率を向上し,再構成品質を維持しながらトレーニング時間を短縮するメモリ効率の高いNeRFフレームワークである。
最新技術であるInstant-NGP、TensoRF、DVGOによる実験は、MF-NeRFが同じGPUハードウェア上で、同様のあるいはそれ以上のリコンストラクション品質で最速のトレーニング時間を達成できることを示唆している。
論文 参考訳(メタデータ) (2023-04-25T05:44:50Z) - Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos [69.22032459870242]
本稿では,Residual Radiance Field(ReRF)という新しい手法を提案する。
このような戦略は品質を犠牲にすることなく大きな動きを扱えることを示す。
ReRFに基づいて,3桁の圧縮率を達成する特別なFVVを設計し,ダイナミックシーンの長期FVVのオンラインストリーミングをサポートするReRFプレーヤを提供する。
論文 参考訳(メタデータ) (2023-04-10T08:36:00Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
本稿では,スパース入力センサビューから観測される大規模な屋外運転シーンをモデル化することで,NeRFを大幅に改善するCLONeRを提案する。
これは、NeRFフレームワーク内の占有率と色学習を、それぞれLiDARとカメラデータを用いてトレーニングされた個別のMulti-Layer Perceptron(MLP)に分離することで実現される。
さらに,NeRFモデルと平行に3D Occupancy Grid Maps(OGM)を構築する手法を提案し,この占有グリッドを利用して距離空間のレンダリングのために線に沿った点のサンプリングを改善する。
論文 参考訳(メタデータ) (2022-09-02T17:44:50Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
エンドツーエンドの最適化機能は、ニューラルイメージ圧縮(NIC)の優れた損失圧縮性能を提供する。
異なるモデルは、R-D空間の異なる点に到達するために訓練される必要がある。
深層ネットワークと統計モデルを用いてNICのR-D挙動を記述するために,本質的な数学的関数の定式化に努めている。
論文 参考訳(メタデータ) (2021-06-24T12:23:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。