Neural NeRF Compression
- URL: http://arxiv.org/abs/2406.08943v1
- Date: Thu, 13 Jun 2024 09:12:26 GMT
- Title: Neural NeRF Compression
- Authors: Tuan Pham, Stephan Mandt,
- Abstract summary: Recent NeRFs utilize feature grids to improve rendering quality and speed.
These representations introduce significant storage overhead.
This paper presents a novel method for efficiently compressing a grid-based NeRF model.
- Score: 19.853882143024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRFs) have emerged as powerful tools for capturing detailed 3D scenes through continuous volumetric representations. Recent NeRFs utilize feature grids to improve rendering quality and speed; however, these representations introduce significant storage overhead. This paper presents a novel method for efficiently compressing a grid-based NeRF model, addressing the storage overhead concern. Our approach is based on the non-linear transform coding paradigm, employing neural compression for compressing the model's feature grids. Due to the lack of training data involving many i.i.d scenes, we design an encoder-free, end-to-end optimized approach for individual scenes, using lightweight decoders. To leverage the spatial inhomogeneity of the latent feature grids, we introduce an importance-weighted rate-distortion objective and a sparse entropy model employing a masking mechanism. Our experimental results validate that our proposed method surpasses existing works in terms of grid-based NeRF compression efficacy and reconstruction quality.
Related papers
- NeRFCodec: Neural Feature Compression Meets Neural Radiance Fields for Memory-Efficient Scene Representation [22.151167286623416]
We propose an end-to-end NeRF compression framework that integrates non-linear transform, quantization, and entropy coding for memory-efficient scene representation.
We demonstrate our method outperforms existing NeRF compression methods, enabling high-quality novel view synthesis with a memory budget of 0.5 MB.
arXiv Detail & Related papers (2024-04-02T15:49:00Z) - PNeRFLoc: Visual Localization with Point-based Neural Radiance Fields [54.8553158441296]
We propose a novel visual localization framework, ie, PNeRFLoc, based on a unified point-based representation.
On the one hand, PNeRFLoc supports the initial pose estimation by matching 2D and 3D feature points.
On the other hand, it also enables pose refinement with novel view synthesis using rendering-based optimization.
arXiv Detail & Related papers (2023-12-17T08:30:00Z) - CAwa-NeRF: Instant Learning of Compression-Aware NeRF Features [0.0]
In this paper, we introduce instant learning of compression-aware NeRF features (CAwa-NeRF)
Our proposed instant learning pipeline can achieve impressive results on different kinds of static scenes.
In particular, for single object masked background scenes CAwa-NeRF compresses the feature grids down to 6% (1.2 MB) of the original size without any loss in the PSNR (33 dB) or down to 2.4% (0.53 MB) with a slight virtual loss (32.31 dB)
arXiv Detail & Related papers (2023-10-23T08:40:44Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRF is an efficient pipeline for enhancing implicit neural representations via vector quantization.
We present an innovative multi-scale NeRF sampling scheme that concurrently optimize the NeRF model at both compressed and original scales.
We incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions.
arXiv Detail & Related papers (2023-10-23T01:41:38Z) - SHACIRA: Scalable HAsh-grid Compression for Implicit Neural
Representations [46.01969382873856]
Implicit Neural Representations (INR) or neural fields have emerged as a popular framework to encode multimedia signals.
We propose SHACIRA, a framework for compressing such feature grids with no additional post-hoc pruning/quantization stages.
Our approach outperforms existing INR approaches without the need for any large datasets or domain-specifics.
arXiv Detail & Related papers (2023-09-27T17:59:48Z) - MF-NeRF: Memory Efficient NeRF with Mixed-Feature Hash Table [62.164549651134465]
We propose MF-NeRF, a memory-efficient NeRF framework that employs a Mixed-Feature hash table to improve memory efficiency and reduce training time while maintaining reconstruction quality.
Our experiments with state-of-the-art Instant-NGP, TensoRF, and DVGO, indicate our MF-NeRF could achieve the fastest training time on the same GPU hardware with similar or even higher reconstruction quality.
arXiv Detail & Related papers (2023-04-25T05:44:50Z) - Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos [69.22032459870242]
We present a novel technique, Residual Radiance Field or ReRF, as a highly compact neural representation to achieve real-time free-view rendering on long-duration dynamic scenes.
We show such a strategy can handle large motions without sacrificing quality.
Based on ReRF, we design a special FVV that achieves three orders of magnitudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes.
arXiv Detail & Related papers (2023-04-10T08:36:00Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Rate Distortion Characteristic Modeling for Neural Image Compression [59.25700168404325]
End-to-end optimization capability offers neural image compression (NIC) superior lossy compression performance.
distinct models are required to be trained to reach different points in the rate-distortion (R-D) space.
We make efforts to formulate the essential mathematical functions to describe the R-D behavior of NIC using deep network and statistical modeling.
arXiv Detail & Related papers (2021-06-24T12:23:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.