NeRFCodec: Neural Feature Compression Meets Neural Radiance Fields for Memory-Efficient Scene Representation
- URL: http://arxiv.org/abs/2404.02185v1
- Date: Tue, 2 Apr 2024 15:49:00 GMT
- Title: NeRFCodec: Neural Feature Compression Meets Neural Radiance Fields for Memory-Efficient Scene Representation
- Authors: Sicheng Li, Hao Li, Yiyi Liao, Lu Yu,
- Abstract summary: We propose an end-to-end NeRF compression framework that integrates non-linear transform, quantization, and entropy coding for memory-efficient scene representation.
We demonstrate our method outperforms existing NeRF compression methods, enabling high-quality novel view synthesis with a memory budget of 0.5 MB.
- Score: 22.151167286623416
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of Neural Radiance Fields (NeRF) has greatly impacted 3D scene modeling and novel-view synthesis. As a kind of visual media for 3D scene representation, compression with high rate-distortion performance is an eternal target. Motivated by advances in neural compression and neural field representation, we propose NeRFCodec, an end-to-end NeRF compression framework that integrates non-linear transform, quantization, and entropy coding for memory-efficient scene representation. Since training a non-linear transform directly on a large scale of NeRF feature planes is impractical, we discover that pre-trained neural 2D image codec can be utilized for compressing the features when adding content-specific parameters. Specifically, we reuse neural 2D image codec but modify its encoder and decoder heads, while keeping the other parts of the pre-trained decoder frozen. This allows us to train the full pipeline via supervision of rendering loss and entropy loss, yielding the rate-distortion balance by updating the content-specific parameters. At test time, the bitstreams containing latent code, feature decoder head, and other side information are transmitted for communication. Experimental results demonstrate our method outperforms existing NeRF compression methods, enabling high-quality novel view synthesis with a memory budget of 0.5 MB.
Related papers
- Neural NeRF Compression [19.853882143024]
Recent NeRFs utilize feature grids to improve rendering quality and speed.
These representations introduce significant storage overhead.
This paper presents a novel method for efficiently compressing a grid-based NeRF model.
arXiv Detail & Related papers (2024-06-13T09:12:26Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - CodecNeRF: Toward Fast Encoding and Decoding, Compact, and High-quality Novel-view Synthesis [2.7463268699570134]
We present CodecNeRF, a neural for NeRF representations that can generate a NeRF representation in a single forward pass.
Inspired by the recent parameter-efficient finetuning approaches, we propose a finetuning method to efficiently adapt the generated NeRF representations to a new test instance.
The proposed CodecNeRF achieved unprecedented compression performance of more than 100x and remarkable reduction in encoding time.
arXiv Detail & Related papers (2024-04-07T10:49:59Z) - NeRF-MAE: Masked AutoEncoders for Self-Supervised 3D Representation Learning for Neural Radiance Fields [57.617972778377215]
We show how to generate effective 3D representations from posed RGB images.
We pretrain this representation at scale on our proposed curated posed-RGB data, totaling over 1.8 million images.
Our novel self-supervised pretraining for NeRFs, NeRF-MAE, scales remarkably well and improves performance on various challenging 3D tasks.
arXiv Detail & Related papers (2024-04-01T17:59:55Z) - NERV++: An Enhanced Implicit Neural Video Representation [11.25130799452367]
We introduce neural representations for videos NeRV++, an enhanced implicit neural video representation.
NeRV++ is more straightforward yet effective enhancement over the original NeRV decoder architecture.
We evaluate our method on UVG, MCL JVC, and Bunny datasets, achieving competitive results for video compression with INRs.
arXiv Detail & Related papers (2024-02-28T13:00:32Z) - VQ-NeRF: Vector Quantization Enhances Implicit Neural Representations [25.88881764546414]
VQ-NeRF is an efficient pipeline for enhancing implicit neural representations via vector quantization.
We present an innovative multi-scale NeRF sampling scheme that concurrently optimize the NeRF model at both compressed and original scales.
We incorporate a semantic loss function to improve the geometric fidelity and semantic coherence of our 3D reconstructions.
arXiv Detail & Related papers (2023-10-23T01:41:38Z) - Real-Time Radiance Fields for Single-Image Portrait View Synthesis [85.32826349697972]
We present a one-shot method to infer and render a 3D representation from a single unposed image in real-time.
Given a single RGB input, our image encoder directly predicts a canonical triplane representation of a neural radiance field for 3D-aware novel view synthesis via volume rendering.
Our method is fast (24 fps) on consumer hardware, and produces higher quality results than strong GAN-inversion baselines that require test-time optimization.
arXiv Detail & Related papers (2023-05-03T17:56:01Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
Autoencoders are a type of unsupervised neural networks, which can be used to solve various tasks.
We propose a scheme to explicitly penalize feature redundancies in the bottleneck representation.
We tested our approach across different tasks: dimensionality reduction using three different dataset, image compression using the MNIST dataset, and image denoising using fashion MNIST.
arXiv Detail & Related papers (2022-02-09T18:48:02Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.