論文の概要: Tool Wear Prediction in CNC Turning Operations using Ultrasonic Microphone Arrays and CNNs
- arxiv url: http://arxiv.org/abs/2406.08957v1
- Date: Thu, 13 Jun 2024 09:36:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:34:37.196224
- Title: Tool Wear Prediction in CNC Turning Operations using Ultrasonic Microphone Arrays and CNNs
- Title(参考訳): 超音波マイクロホンアレイとCNNを用いたCNC旋回動作時の工具摩耗予測
- Authors: Jan Steckel, Arne Aerts, Erik Verreycken, Dennis Laurijssen, Walter Daems,
- Abstract要約: 本稿では,超音波マイクロホンアレイと畳み込みニューラルネットワーク(CNN)を組み合わせたCNC回転動作におけるツール摩耗予測手法を提案する。
以上の結果から,高度な超音波センサを深層学習と統合し,精度の高い予測保守を実現する可能性が示唆された。
- 参考スコア(独自算出の注目度): 4.0884398391117704
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a novel method for predicting tool wear in CNC turning operations, combining ultrasonic microphone arrays and convolutional neural networks (CNNs). High-frequency acoustic emissions between 0 kHz and 60 kHz are enhanced using beamforming techniques to improve the signal- to-noise ratio. The processed acoustic data is then analyzed by a CNN, which predicts the Remaining Useful Life (RUL) of cutting tools. Trained on data from 350 workpieces machined with a single carbide insert, the model can accurately predict the RUL of the carbide insert. Our results demonstrate the potential gained by integrating advanced ultrasonic sensors with deep learning for accurate predictive maintenance tasks in CNC machining.
- Abstract(参考訳): 本稿では,超音波マイクロホンアレイと畳み込みニューラルネットワーク(CNN)を組み合わせたCNC回転動作におけるツール摩耗予測手法を提案する。
ビームフォーミング技術を用いて、0kHzから60kHzの高周波音響放射を増強し、信号対雑音比を向上する。
処理された音響データはCNNによって分析され、切断工具の残留有用寿命(RUL)を予測する。
1つの炭化物挿入で加工された350個のワークピースのデータに基づいて、モデルは炭化物挿入のRULを正確に予測することができる。
以上の結果から,CNC加工における精度の高い保守作業を実現するため,高度な超音波センサと深層学習を統合することで得られる可能性が示唆された。
関連論文リスト
- On-Chip Learning with Memristor-Based Neural Networks: Assessing Accuracy and Efficiency Under Device Variations, Conductance Errors, and Input Noise [0.0]
本稿では,オンチップトレーニングと推論のためのメモリメモリハードウェアアクセラレータを提案する。
30メムリスタと4つのニューロンからなるハードウェアは、タングステン、クロム、炭素媒体を持つ3つの異なるM-SDC構造を用いてバイナリ画像分類タスクを実行する。
論文 参考訳(メタデータ) (2024-08-26T23:10:01Z) - Effects of Dataset Sampling Rate for Noise Cancellation through Deep Learning [1.024113475677323]
本研究では,従来のノイズキャンセリング手法の優れた代替手段として,ディープニューラルネットワーク(DNN)の利用について検討する。
ConvTasNETネットワークは、WHAM!、LibriMix、MS-2023 DNS Challengeなどのデータセットでトレーニングされた。
高サンプリングレート(48kHz)でトレーニングされたモデルは、トータル・ハーモニック・ディストーション(THD)と生成ニューラルコーデック(WARP-Q)の値に対するはるかに優れた評価指標を提供した。
論文 参考訳(メタデータ) (2024-05-30T16:20:44Z) - Self-Supervised Pretraining Improves Performance and Inference
Efficiency in Multiple Lung Ultrasound Interpretation Tasks [65.23740556896654]
肺超音波検査における複数分類課題に適用可能なニューラルネットワーク特徴抽出器を,自己指導型プレトレーニングで作成できるかどうかを検討した。
3つの肺超音波のタスクを微調整すると、事前訓練されたモデルにより、各テストセットの受信操作曲線(AUC)における平均クロスタスク面積は、それぞれ0.032と0.061に改善された。
論文 参考訳(メタデータ) (2023-09-05T21:36:42Z) - Digital noise spectroscopy with a quantum sensor [57.53000001488777]
本稿では,ノイズプロセスの自己相関をサンプリングし,再構成するための量子センシングプロトコルを実験的に導入し,実証する。
ウォルシュノイズ分光法はスピンフリップパルスの単純な配列を利用してディジタルフィルタの完全基底を生成する。
ダイヤモンド中の単一窒素空孔中心の電子スピン上での核スピン浴により生じる有効磁場の自己相関関数を実験的に再構成した。
論文 参考訳(メタデータ) (2022-12-19T02:19:35Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
我々はニューラルクランプ法と呼ばれる新しい後処理キャリブレーション法を提案する。
実験の結果,Neural Clampingは最先端の処理後のキャリブレーション法よりも優れていた。
論文 参考訳(メタデータ) (2022-09-23T14:18:39Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - A Novel Approach For Analysis of Distributed Acoustic Sensing System
Based on Deep Transfer Learning [0.0]
畳み込みニューラルネットワークは、空間情報を抽出するための非常に有能なツールである。
LSTM(Long-Short term memory)は、シーケンシャルデータを処理するための有効な機器である。
我々のフレームワークのVGG-16アーキテクチャは、50のトレーニングで100%の分類精度が得られる。
論文 参考訳(メタデータ) (2022-06-24T19:56:01Z) - Improving Generalization of Deep Neural Network Acoustic Models with
Length Perturbation and N-best Based Label Smoothing [49.82147684491619]
音声認識(ASR)のためのディープニューラルネットワーク(DNN)音響モデルの一般化を改善する2つの手法を提案する。
長さ摂動 (Longth perturbation) は、音声特徴系列の長さを変更するために音声のフレームをランダムにドロップして挿入するデータ拡張アルゴリズムである。
N-bestに基づくラベルスムーシングは、n-best仮説からノイズラベルが生成される過度な適合を避けるために、トレーニング中にグラウンド・真理ラベルにランダムにノイズを注入する。
論文 参考訳(メタデータ) (2022-03-29T01:40:22Z) - Machining Cycle Time Prediction: Data-driven Modelling of Machine Tool
Feedrate Behavior with Neural Networks [0.34998703934432673]
本稿では,機械工具軸毎にニューラルネットワークモデルを構築し,データ駆動型フィードレートと加工サイクル時間予測手法を提案する。
市販加工センターにおける産業用薄肉構造部品を用いた検証試験により, 加工時間を90%以上精度で推定した。
論文 参考訳(メタデータ) (2021-06-18T08:29:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。