AirPlanes: Accurate Plane Estimation via 3D-Consistent Embeddings
- URL: http://arxiv.org/abs/2406.08960v1
- Date: Thu, 13 Jun 2024 09:49:31 GMT
- Title: AirPlanes: Accurate Plane Estimation via 3D-Consistent Embeddings
- Authors: Jamie Watson, Filippo Aleotti, Mohamed Sayed, Zawar Qureshi, Oisin Mac Aodha, Gabriel Brostow, Michael Firman, Sara Vicente,
- Abstract summary: We tackle the problem of estimating the planar surfaces in a 3D scene from posed images.
We propose a method that predicts multi-view consistent plane embeddings that complement geometry when clustering points into planes.
We show through extensive evaluation on the ScanNetV2 dataset that our new method outperforms existing approaches.
- Score: 26.845588648999417
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Extracting planes from a 3D scene is useful for downstream tasks in robotics and augmented reality. In this paper we tackle the problem of estimating the planar surfaces in a scene from posed images. Our first finding is that a surprisingly competitive baseline results from combining popular clustering algorithms with recent improvements in 3D geometry estimation. However, such purely geometric methods are understandably oblivious to plane semantics, which are crucial to discerning distinct planes. To overcome this limitation, we propose a method that predicts multi-view consistent plane embeddings that complement geometry when clustering points into planes. We show through extensive evaluation on the ScanNetV2 dataset that our new method outperforms existing approaches and our strong geometric baseline for the task of plane estimation.
Related papers
- MonoPlane: Exploiting Monocular Geometric Cues for Generalizable 3D Plane Reconstruction [37.481945507799594]
This paper presents a generalizable 3D plane detection and reconstruction framework named MonoPlane.
We first leverage large-scale pre-trained neural networks to obtain the depth and surface normals from a single image.
These monocular geometric cues are then incorporated into a proximity-guided RANSAC framework to sequentially fit each plane instance.
arXiv Detail & Related papers (2024-11-02T12:15:29Z) - Plane2Depth: Hierarchical Adaptive Plane Guidance for Monocular Depth Estimation [38.81275292687583]
We propose Plane2Depth, which adaptively utilizes plane information to improve depth prediction within a hierarchical framework.
In the proposed plane guided depth generator (PGDG), we design a set of plane queries as prototypes to softly model planes in the scene and predict per-pixel plane coefficients.
In the proposed adaptive plane query aggregation (APGA) module, we introduce a novel feature interaction approach to improve the aggregation of multi-scale plane features.
arXiv Detail & Related papers (2024-09-04T07:45:06Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - Ground Plane Matters: Picking Up Ground Plane Prior in Monocular 3D
Object Detection [92.75961303269548]
The ground plane prior is a very informative geometry clue in monocular 3D object detection (M3OD)
We propose a Ground Plane Enhanced Network (GPENet) which resolves both issues at one go.
Our GPENet can outperform other methods and achieve state-of-the-art performance, well demonstrating the effectiveness and the superiority of the proposed approach.
arXiv Detail & Related papers (2022-11-03T02:21:35Z) - Neural 3D Scene Reconstruction with the Manhattan-world Assumption [58.90559966227361]
This paper addresses the challenge of reconstructing 3D indoor scenes from multi-view images.
Planar constraints can be conveniently integrated into the recent implicit neural representation-based reconstruction methods.
The proposed method outperforms previous methods by a large margin on 3D reconstruction quality.
arXiv Detail & Related papers (2022-05-05T17:59:55Z) - PlaneMVS: 3D Plane Reconstruction from Multi-View Stereo [32.81496429134453]
We present a novel framework named PlaneMVS for 3D plane reconstruction from multiple input views with known camera poses.
In contrast, we reconstruct 3D planes with a multi-view-stereo (MVS) pipeline that takes advantage of multi-view geometry.
Our method even outperforms a set of SOTA learning-based MVS methods thanks to the learned plane priors.
arXiv Detail & Related papers (2022-03-22T22:35:46Z) - Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection [63.942632088208505]
We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
arXiv Detail & Related papers (2020-03-28T18:51:43Z) - From Planes to Corners: Multi-Purpose Primitive Detection in Unorganized
3D Point Clouds [59.98665358527686]
We propose a new method for segmentation-free joint estimation of orthogonal planes.
Such unified scene exploration allows for multitudes of applications such as semantic plane detection or local and global scan alignment.
Our experiments demonstrate the validity of our approach in numerous scenarios from wall detection to 6D tracking.
arXiv Detail & Related papers (2020-01-21T06:51:47Z) - Plane Pair Matching for Efficient 3D View Registration [7.920114031312631]
We present a novel method to estimate the motion matrix between overlapping pairs of 3D views in the context of indoor scenes.
We use the Manhattan world assumption to introduce lightweight geometric constraints under the form of planes quadri into the problem.
We validate our approach on a toy example and present quantitative experiments on a public RGB-D dataset, comparing against recent state-of-the-art methods.
arXiv Detail & Related papers (2020-01-20T11:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.