Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection
- URL: http://arxiv.org/abs/2003.12870v1
- Date: Sat, 28 Mar 2020 18:51:43 GMT
- Title: Refined Plane Segmentation for Cuboid-Shaped Objects by Leveraging Edge
Detection
- Authors: Alexander Naumann, Laura D\"orr, Niels Ole Salscheider, Kai Furmans
- Abstract summary: We propose a post-processing algorithm to align the segmented plane masks with edges detected in the image.
This allows us to increase the accuracy of state-of-the-art approaches, while limiting ourselves to cuboid-shaped objects.
- Score: 63.942632088208505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in the area of plane segmentation from single RGB images show
strong accuracy improvements and now allow a reliable segmentation of indoor
scenes into planes. Nonetheless, fine-grained details of these segmentation
masks are still lacking accuracy, thus restricting the usability of such
techniques on a larger scale in numerous applications, such as inpainting for
Augmented Reality use cases. We propose a post-processing algorithm to align
the segmented plane masks with edges detected in the image. This allows us to
increase the accuracy of state-of-the-art approaches, while limiting ourselves
to cuboid-shaped objects. Our approach is motivated by logistics, where this
assumption is valid and refined planes can be used to perform robust object
detection without the need for supervised learning. Results for two baselines
and our approach are reported on our own dataset, which we made publicly
available. The results show a consistent improvement over the state-of-the-art.
The influence of the prior segmentation and the edge detection is investigated
and finally, areas for future research are proposed.
Related papers
- LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
This paper introduces a framework that explores amodal segmentation for robotic grasping in cluttered scenes.
We propose a Linear-fusion Attention-guided Convolutional Network (LAC-Net)
The results on different datasets show that our method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-08-06T14:50:48Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - What You See Is What You Detect: Towards better Object Densification in
3D detection [2.3436632098950456]
The widely-used full-shape completion approach actually leads to a higher error-upper bound especially for far away objects and small objects like pedestrians.
We introduce a visible part completion method that requires only 11.3% of the prediction points that previous methods generate.
To recover the dense representation, we propose a mesh-deformation-based method to augment the point set associated with visible foreground objects.
arXiv Detail & Related papers (2023-10-27T01:46:37Z) - X-PDNet: Accurate Joint Plane Instance Segmentation and Monocular Depth
Estimation with Cross-Task Distillation and Boundary Correction [9.215384107659665]
X-PDNet is a framework for the multitask learning of plane instance segmentation and depth estimation.
We highlight the current limitations of using the ground truth boundary to develop boundary regression loss.
We propose a novel method that exploits depth information to support precise boundary region segmentation.
arXiv Detail & Related papers (2023-09-15T14:27:54Z) - Detect Any Deepfakes: Segment Anything Meets Face Forgery Detection and
Localization [30.317619885984005]
We introduce the well-trained vision segmentation foundation model, i.e., Segment Anything Model (SAM) in face forgery detection and localization.
Based on SAM, we propose the Detect Any Deepfakes (DADF) framework with the Multiscale Adapter.
The proposed framework seamlessly integrates end-to-end forgery localization and detection optimization.
arXiv Detail & Related papers (2023-06-29T16:25:04Z) - ReFit: A Framework for Refinement of Weakly Supervised Semantic
Segmentation using Object Border Fitting for Medical Images [4.945138408504987]
Weakly Supervised Semantic (WSSS) relying only on image-level supervision is a promising approach to deal with the need for networks.
We propose our novel ReFit framework, which deploys state-of-the-art class activation maps combined with various post-processing techniques.
By applying our method to WSSS predictions, we achieved up to 10% improvement over the current state-of-the-art WSSS methods for medical imaging.
arXiv Detail & Related papers (2023-03-14T12:46:52Z) - End-to-End Instance Edge Detection [29.650295133113183]
Edge detection has long been an important problem in the field of computer vision.
Previous works have explored category-agnostic or category-aware edge detection.
In this paper, we explore edge detection in the context of object instances.
arXiv Detail & Related papers (2022-04-06T15:32:21Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
We introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera.
We exploit a self-supervised loss function that we exploit to train a proposal-based segmentation network.
We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
arXiv Detail & Related papers (2020-11-11T08:34:40Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.