論文の概要: Adaptive Temporal Motion Guided Graph Convolution Network for Micro-expression Recognition
- arxiv url: http://arxiv.org/abs/2406.08997v1
- Date: Thu, 13 Jun 2024 10:57:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 18:24:52.071238
- Title: Adaptive Temporal Motion Guided Graph Convolution Network for Micro-expression Recognition
- Title(参考訳): マイクロ圧縮認識のための適応時間運動誘導グラフ畳み込みネットワーク
- Authors: Fengyuan Zhang, Zhaopei Huang, Xinjie Zhang, Qin Jin,
- Abstract要約: ATM-GCN(Adaptive Temporal Motion Guided Graph Convolution Network)と呼ばれる,マイクロ圧縮認識のための新しいフレームワークを提案する。
本フレームワークは,クリップ全体のフレーム間の時間的依存関係の把握に優れ,クリップレベルでのマイクロ圧縮認識が向上する。
- 参考スコア(独自算出の注目度): 48.21696443824074
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Micro-expressions serve as essential cues for understanding individuals' genuine emotional states. Recognizing micro-expressions attracts increasing research attention due to its various applications in fields such as business negotiation and psychotherapy. However, the intricate and transient nature of micro-expressions poses a significant challenge to their accurate recognition. Most existing works either neglect temporal dependencies or suffer from redundancy issues in clip-level recognition. In this work, we propose a novel framework for micro-expression recognition, named the Adaptive Temporal Motion Guided Graph Convolution Network (ATM-GCN). Our framework excels at capturing temporal dependencies between frames across the entire clip, thereby enhancing micro-expression recognition at the clip level. Specifically, the integration of Adaptive Temporal Motion layers empowers our method to aggregate global and local motion features inherent in micro-expressions. Experimental results demonstrate that ATM-GCN not only surpasses existing state-of-the-art methods, particularly on the Composite dataset, but also achieves superior performance on the latest micro-expression dataset CAS(ME)$^3$.
- Abstract(参考訳): マイクロ表現は個人の真の感情状態を理解するための重要な手がかりとなる。
マイクロ表現の認識は、ビジネス交渉や心理療法などの分野での様々な応用により、研究の注目を集めている。
しかし、マイクロ表現の複雑で過渡的な性質は、その正確な認識に重大な課題をもたらす。
既存の作業の多くは、時間的依存を無視したり、クリップレベルの認識において冗長性の問題に悩まされている。
本研究では,ATM-GCN(Adaptive Temporal Motion Guided Graph Convolution Network)という,マイクロ圧縮認識のための新しいフレームワークを提案する。
本フレームワークは,クリップ全体のフレーム間の時間的依存関係の把握に優れ,クリップレベルでのマイクロ圧縮認識が向上する。
具体的には,アダプティブ・テンポラル・モーション(Adaptive Temporal Motion)レイヤの統合により,マイクロ表現に固有のグローバル・ローカルな動作特徴を集約する。
実験結果から,ATM-GCNは既存の最先端手法,特にコンポジットデータセットを超越するだけでなく,最新のマイクロ圧縮データセットCAS(ME)$^3$に対して優れた性能を発揮することが示された。
関連論文リスト
- Neuron: Learning Context-Aware Evolving Representations for Zero-Shot Skeleton Action Recognition [64.56321246196859]
本稿では,dUalスケルトン・セマンティック・セマンティック・セマンティック・セマンティック・シンジスティック・フレームワークを提案する。
まず、時空間進化型マイクロプロトタイプを構築し、動的コンテキスト認識側情報を統合する。
本研究では,空間的圧縮と時間的記憶機構を導入し,空間的時間的マイクロプロトタイプの成長を導く。
論文 参考訳(メタデータ) (2024-11-18T05:16:11Z) - Three-Stream Temporal-Shift Attention Network Based on Self-Knowledge Distillation for Micro-Expression Recognition [21.675660978188617]
ミクロな表現認識は、犯罪分析や心理療法など、多くの分野で重要である。
本稿では,SKD-TSTSANと呼ばれる自己知識蒸留に基づく3ストリーム時間シフトアテンションネットワークを提案する。
論文 参考訳(メタデータ) (2024-06-25T13:22:22Z) - Micro-Expression Recognition Based on Attribute Information Embedding
and Cross-modal Contrastive Learning [22.525295392858293]
本稿では,属性情報埋め込みとクロスモーダルコントラスト学習に基づくマイクロ圧縮認識手法を提案する。
我々はCASME II と MMEW データベースで広範な実験を行い、精度はそれぞれ77.82% と 71.04% である。
論文 参考訳(メタデータ) (2022-05-29T12:28:10Z) - SpatioTemporal Focus for Skeleton-based Action Recognition [66.8571926307011]
グラフ畳み込みネットワーク(GCN)は骨格に基づく行動認識において広く採用されている。
近年提案されている骨格に基づく行動認識法の性能は以下の要因によって制限されていると論じる。
近年の注目機構に着想を得て,アクション関連関係情報を取得するためのマルチグラインド・コンテキスト集中モジュール MCF を提案する。
論文 参考訳(メタデータ) (2022-03-31T02:45:24Z) - Video-based Facial Micro-Expression Analysis: A Survey of Datasets,
Features and Algorithms [52.58031087639394]
マイクロ表現は不随意かつ過渡的な表情である。
嘘検出や犯罪検出など、幅広い応用において重要な情報を提供することができる。
マイクロ表現は過渡的で低強度であるため、検出と認識は困難であり、専門家の経験に大きく依存する。
論文 参考訳(メタデータ) (2022-01-30T05:14:13Z) - MMNet: Muscle motion-guided network for micro-expression recognition [2.032432845751978]
筋運動誘導ネットワーク(MMNet)という,ロバストなマイクロ圧縮認識フレームワークを提案する。
具体的には,局所的な微妙な筋運動パターンを識別情報が少なくモデル化することに焦点を当てた連続的注意ブロック(CA)を導入する。
我々の手法は最先端の手法よりも大きなマージンで優れている。
論文 参考訳(メタデータ) (2022-01-14T04:05:49Z) - Short and Long Range Relation Based Spatio-Temporal Transformer for
Micro-Expression Recognition [61.374467942519374]
我々は,マイクロ圧縮認識のための最初の純粋トランスフォーマーベースアプローチである,新しいアテンポ的トランスフォーマーアーキテクチャを提案する。
空間パターンを学習する空間エンコーダと、時間的分析のための時間的次元分類と、ヘッドとを備える。
広範に使用されている3つの自発的マイクロ圧縮データセットに対する総合的な評価は,提案手法が一貫して芸術の状態を上回っていることを示している。
論文 参考訳(メタデータ) (2021-12-10T22:10:31Z) - Multi-Modal Interaction Graph Convolutional Network for Temporal
Language Localization in Videos [55.52369116870822]
本稿では,ビデオにおける時間的言語ローカライゼーションの問題に対処することに焦点を当てる。
自然言語文で記述された瞬間の始点と終点を、未編集のビデオで識別することを目的としている。
論文 参考訳(メタデータ) (2021-10-12T14:59:25Z) - Recognizing Micro-Expression in Video Clip with Adaptive Key-Frame
Mining [18.34213657996624]
マイクロ・エクスプレッションでは、顔の動きは過渡的であり、時間を通して緩やかに局所化される。
適応鍵フレームマイニングネットワーク(AKMNet)と呼ばれる新しいエンドツーエンドディープラーニングアーキテクチャを提案する。
AKMNetは、自己学習した局所鍵フレームの空間的特徴と、その大域的時間的ダイナミクスを組み合わせることで、差別的時間的表現を学習することができる。
論文 参考訳(メタデータ) (2020-09-19T07:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。