論文の概要: Auto-Vocabulary Segmentation for LiDAR Points
- arxiv url: http://arxiv.org/abs/2406.09126v2
- Date: Thu, 25 Jul 2024 11:50:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-26 18:47:24.505822
- Title: Auto-Vocabulary Segmentation for LiDAR Points
- Title(参考訳): LiDAR点に対するオートボキャブラリセグメンテーション
- Authors: Weijie Wei, Osman Ülger, Fatemeh Karimi Nejadasl, Theo Gevers, Martin R. Oswald,
- Abstract要約: 自動オブジェクトクラス認識とオープンなセグメンテーションのためのフレームワークであるAutoVoc3Dを提案する。
また、テキストとポイントクラウドのセマンティック類似性を評価するための新しい指標であるテキストポイントセマンティック類似性についても紹介する。
- 参考スコア(独自算出の注目度): 20.7179907935644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing perception methods for autonomous driving fall short of recognizing unknown entities not covered in the training data. Open-vocabulary methods offer promising capabilities in detecting any object but are limited by user-specified queries representing target classes. We propose AutoVoc3D, a framework for automatic object class recognition and open-ended segmentation. Evaluation on nuScenes showcases AutoVoc3D's ability to generate precise semantic classes and accurate point-wise segmentation. Moreover, we introduce Text-Point Semantic Similarity, a new metric to assess the semantic similarity between text and point cloud without eliminating novel classes.
- Abstract(参考訳): 既存の自動運転の認識手法は、トレーニングデータに含まれていない未知の物体を認識するには不十分である。
Open-vocabularyメソッドは、任意のオブジェクトを検知する有望な機能を提供するが、ターゲットクラスを表すユーザが指定したクエリによって制限される。
自動オブジェクトクラス認識とオープンなセグメンテーションのためのフレームワークであるAutoVoc3Dを提案する。
nuScenesの評価では、AutoVoc3Dが正確なセマンティッククラスと正確なポイントワイドセグメンテーションを生成する能力を示している。
さらに,テキスト・ポイント・セマンティック・類似性(Text-Point Semantic similarity)を導入し,テキストとポイント・クラウドのセマンティック・類似性を評価する。
関連論文リスト
- Auto-Vocabulary Semantic Segmentation [13.410217680999462]
textitAuto-Vocabulary Semantics (AVS)を導入する。
本フレームワークは,拡張BLIP埋め込みを用いて,関連クラス名を自律的に識別する。
提案手法は,PASCAL VOCやContext,ADE20K,Cityscapes for AVSなどのデータセットに新たなベンチマークを設定する。
論文 参考訳(メタデータ) (2023-12-07T18:55:52Z) - Three ways to improve feature alignment for open vocabulary detection [88.65076922242184]
ゼロショットオープンボキャブラリ検出の鍵となる問題は、視覚的特徴とテキスト的特徴の整合性である。
以前のアプローチでは、特徴ピラミッドと検出ヘッドをゼロからトレーニングし、事前トレーニング中に確立された視覚テキストの特徴アライメントを壊す。
本稿では,これらの問題を緩和する3つの方法を提案する。まず,テキストの埋め込みを強化するための簡単なスキームを用いて,学習中に見られる少数のクラスへの過度な適合を防止する。
次に、特徴ピラミッドネットワークと検出ヘッドをトレーニング可能なショートカットを含むように変更する。
最後に、より大きなコーパスを活用するために、自己学習アプローチが使用される。
論文 参考訳(メタデータ) (2023-03-23T17:59:53Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
我々は3Dポイントクラウドのポイントレベルのセマンティクスをバウンディングボックスレベルの監視で学習するために,Box2Segと呼ばれるニューラルアーキテクチャを導入する。
提案するネットワークは,安価な,あるいは既定のバウンディングボックスレベルのアノテーションやサブクラウドレベルのタグでトレーニング可能であることを示す。
論文 参考訳(メタデータ) (2022-01-09T09:07:48Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Video Class Agnostic Segmentation Benchmark for Autonomous Driving [13.312978643938202]
特定の安全クリティカルなロボティクスアプリケーションでは、トレーニング時に未知のものを含むすべてのオブジェクトを分割することが重要です。
自律運転における単眼ビデオシーケンスから未知の物体を考慮に入れたビデオクラスセグメンテーションのタスクを定式化する。
論文 参考訳(メタデータ) (2021-03-19T20:41:40Z) - LRGNet: Learnable Region Growing for Class-Agnostic Point Cloud
Segmentation [19.915593390338337]
本研究は,クラス非依存のクラウドセグメンテーションのための学習可能な領域成長手法を提案する。
提案手法は, 物体の形状や大きさを仮定することなく, 単一の深層ニューラルネットワークを用いて任意のクラスを分割することができる。
論文 参考訳(メタデータ) (2021-03-16T15:58:01Z) - 4D Panoptic LiDAR Segmentation [27.677435778317054]
意味クラスと時間的に一貫性のあるインスタンスIDを3Dポイントのシーケンスに割り当てる4DパノプティカルLiDARセグメンテーションを提案する。
マルチオブジェクトトラッキングのベンチマークの最近の進歩に触発され、タスクのセマンティクスとポイントツーインスタンスの関連を分離する新しい評価指標を採用することを提案する。
論文 参考訳(メタデータ) (2021-02-24T18:56:16Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
そこで本研究では,視覚領域における視覚的特徴と視覚的対象の両方を学習するために,視覚的特徴を合成することを提案する。
クラスセマンティックスを用いた新しい生成モデルを用いて特徴を生成するだけでなく,特徴を識別的に分離する。
論文 参考訳(メタデータ) (2020-10-19T12:36:11Z) - Few-shot 3D Point Cloud Semantic Segmentation [138.80825169240302]
本稿では,新しい注意型マルチプロトタイプトランスダクティブ・ショットポイント・クラウドセマンティックセマンティック・セマンティクス法を提案する。
提案手法は,雲のセマンティックセマンティックセグメンテーション設定の違いによるベースラインに比べて,顕著で一貫した改善を示す。
論文 参考訳(メタデータ) (2020-06-22T08:05:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。