Detection-Rate-Emphasized Multi-objective Evolutionary Feature Selection for Network Intrusion Detection
- URL: http://arxiv.org/abs/2406.09180v1
- Date: Thu, 13 Jun 2024 14:42:17 GMT
- Title: Detection-Rate-Emphasized Multi-objective Evolutionary Feature Selection for Network Intrusion Detection
- Authors: Zi-Hang Cheng, Haopu Shang, Chao Qian,
- Abstract summary: We propose DR-MOFS to model the feature selection problem in network intrusion detection as a three-objective optimization problem.
In most cases, the proposed method can outperform previous methods, i.e., lead to fewer features, higher accuracy and detection rate.
- Score: 21.104686670216445
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Network intrusion detection is one of the most important issues in the field of cyber security, and various machine learning techniques have been applied to build intrusion detection systems. However, since the number of features to describe the network connections is often large, where some features are redundant or noisy, feature selection is necessary in such scenarios, which can both improve the efficiency and accuracy. Recently, some researchers focus on using multi-objective evolutionary algorithms (MOEAs) to select features. But usually, they only consider the number of features and classification accuracy as the objectives, resulting in unsatisfactory performance on a critical metric, detection rate. This will lead to the missing of many real attacks and bring huge losses to the network system. In this paper, we propose DR-MOFS to model the feature selection problem in network intrusion detection as a three-objective optimization problem, where the number of features, accuracy and detection rate are optimized simultaneously, and use MOEAs to solve it. Experiments on two popular network intrusion detection datasets NSL-KDD and UNSW-NB15 show that in most cases the proposed method can outperform previous methods, i.e., lead to fewer features, higher accuracy and detection rate.
Related papers
- Feature Selection for Network Intrusion Detection [3.7414804164475983]
We present a novel information-theoretic method that facilitates the exclusion of non-informative features when detecting network intrusions.
The proposed method is based on function approximation using a neural network, which enables a version of our approach that incorporates a recurrent layer.
arXiv Detail & Related papers (2024-11-18T14:25:55Z) - Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
We design a Knowledge Discovery Network (KDN) to implement the renormalization group theory in terms of efficient feature extraction.
Renormalized connection (RC) on the KDN enables synergistic focusing'' of multi-scale features.
RCs extend the multi-level feature's divide-and-conquer'' mechanism of the FPN-based detectors to a wide range of scale-preferred tasks.
arXiv Detail & Related papers (2024-09-09T13:56:22Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Machine Learning-Based Intrusion Detection: Feature Selection versus
Feature Extraction [3.5889226512319903]
Internet of things (IoT) devices are highly vulnerable to cyber-attacks.
A variety of machine learning-based network intrusion detection methods for IoT networks have been developed.
This paper provides a comprehensive comparison between these two feature reduction methods of intrusion detection in terms of various performance metrics.
arXiv Detail & Related papers (2023-07-04T08:48:01Z) - R(Det)^2: Randomized Decision Routing for Object Detection [64.48369663018376]
We propose a novel approach to combine decision trees and deep neural networks in an end-to-end learning manner for object detection.
To facilitate effective learning, we propose randomized decision routing with node selective and associative losses.
We name this approach as the randomized decision routing for object detection, abbreviated as R(Det)$2$.
arXiv Detail & Related papers (2022-04-02T07:54:58Z) - Feature Analysis for ML-based IIoT Intrusion Detection [0.0]
Powerful Machine Learning models have been adopted to implement Network Intrusion Detection Systems (NIDSs)
It is important to select the right set of data features, which maximise the detection accuracy as well as computational efficiency.
This paper provides an extensive analysis of the optimal feature sets in terms of the importance and predictive power of network attacks.
arXiv Detail & Related papers (2021-08-29T02:19:37Z) - Supervised Feature Selection Techniques in Network Intrusion Detection:
a Critical Review [9.177695323629896]
Machine Learning techniques are becoming an invaluable support for network intrusion detection.
Dealing with the vast diversity and number of features that typically characterize data traffic is a hard problem.
By reducing the feature space and retaining only the most significant features, Feature Selection (FS) becomes a crucial pre-processing step in network management.
arXiv Detail & Related papers (2021-04-11T08:42:01Z) - Decoupled and Memory-Reinforced Networks: Towards Effective Feature
Learning for One-Step Person Search [65.51181219410763]
One-step methods have been developed to handle pedestrian detection and identification sub-tasks using a single network.
There are two major challenges in the current one-step approaches.
We propose a decoupled and memory-reinforced network (DMRNet) to overcome these problems.
arXiv Detail & Related papers (2021-02-22T06:19:45Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - A cognitive based Intrusion detection system [0.0]
Intrusion detection is one of the important mechanisms that provide computer networks security.
This paper proposes a new approach based on Deep Neural Network ans Support vector machine classifier.
The proposed model predicts the attacks with better accuracy for intrusion detection rather similar methods.
arXiv Detail & Related papers (2020-05-19T13:30:30Z) - FairMOT: On the Fairness of Detection and Re-Identification in Multiple
Object Tracking [92.48078680697311]
Multi-object tracking (MOT) is an important problem in computer vision.
We present a simple yet effective approach termed as FairMOT based on the anchor-free object detection architecture CenterNet.
The approach achieves high accuracy for both detection and tracking.
arXiv Detail & Related papers (2020-04-04T08:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.