論文の概要: GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning
- arxiv url: http://arxiv.org/abs/2406.09187v2
- Date: Sun, 09 Mar 2025 03:42:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:40:14.161468
- Title: GuardAgent: Safeguard LLM Agents by a Guard Agent via Knowledge-Enabled Reasoning
- Title(参考訳): GuardAgent: ナレッジ付き推論によるガードエージェントによるLLMエージェントの保護
- Authors: Zhen Xiang, Linzhi Zheng, Yanjie Li, Junyuan Hong, Qinbin Li, Han Xie, Jiawei Zhang, Zidi Xiong, Chulin Xie, Carl Yang, Dawn Song, Bo Li,
- Abstract要約: 安全ガード要求を満たすか否かを動的に確認し,目標エージェントを保護する最初のガードレールエージェントであるガードアジェントを提案する。
特にGuardAgentは、まず安全ガードの要求を分析してタスクプランを生成し、それからその計画をガードレールコードにマップして実行します。
GuardAgentは,98%,83%以上のガードレールアキュラシーを有する2つのベンチマークにおいて,異なる種類のエージェントに対する違反行為を効果的に抑制することを示した。
- 参考スコア(独自算出の注目度): 79.07152553060601
- License:
- Abstract: The rapid advancement of large language model (LLM) agents has raised new concerns regarding their safety and security, which cannot be addressed by traditional textual-harm-focused LLM guardrails. We propose GuardAgent, the first guardrail agent to protect the target agents by dynamically checking whether their actions satisfy given safety guard requests. Specifically, GuardAgent first analyzes the safety guard requests to generate a task plan, and then maps this plan into guardrail code for execution. By performing the code execution, GuardAgent can deterministically follow the safety guard request and safeguard target agents. In both steps, an LLM is utilized as the reasoning component, supplemented by in-context demonstrations retrieved from a memory module storing experiences from previous tasks. GuardAgent can understand different safety guard requests and provide reliable code-based guardrails with high flexibility and low operational overhead. In addition, we propose two novel benchmarks: EICU-AC benchmark to assess the access control for healthcare agents and Mind2Web-SC benchmark to evaluate the safety policies for web agents. We show that GuardAgent effectively moderates the violation actions for different types of agents on these two benchmarks with over 98% and 83% guardrail accuracies, respectively. Project page: https://guardagent.github.io/
- Abstract(参考訳): 大規模言語モデル(LLM)エージェントの急速な進歩は、その安全性と安全性に関する新たな懸念を提起している。
安全ガード要求を満たすか否かを動的に確認し,目標エージェントを保護する最初のガードレールエージェントであるガードアジェントを提案する。
特にGuardAgentは、まず安全ガードの要求を分析してタスクプランを生成し、それからその計画をガードレールコードにマップして実行します。
コード実行を実行することで、GuardAgentは、決定的に安全ガード要求と保護ターゲットエージェントに従うことができる。
どちらのステップでも、LCMは推論コンポーネントとして利用され、以前のタスクから経験を格納したメモリモジュールから取得したコンテキスト内デモによって補完される。
GuardAgentは、さまざまなセーフガード要求を理解し、高い柔軟性と低い運用オーバーヘッドを備えた、信頼性の高いコードベースのガードレールを提供する。
さらに、医療エージェントのアクセス制御を評価するEICU-ACベンチマークと、Webエージェントの安全ポリシーを評価するMind2Web-SCベンチマークの2つの新しいベンチマークを提案する。
この2つのベンチマークでは,ガードレールの精度が98%,ガードレールの精度が83%,それぞれ異なる種類のエージェントに対する違反行為が効果的に抑制されることが示されている。
プロジェクトページ: https://guardagent.github.io/
関連論文リスト
- Automating Prompt Leakage Attacks on Large Language Models Using Agentic Approach [9.483655213280738]
本稿では,大規模言語モデル(LLM)の安全性を評価するための新しいアプローチを提案する。
我々は、プロンプトリークをLLMデプロイメントの安全性にとって重要な脅威と定義する。
我々は,協調エージェントが目的のLLMを探索・活用し,そのプロンプトを抽出するマルチエージェントシステムを実装した。
論文 参考訳(メタデータ) (2025-02-18T08:17:32Z) - AgentOccam: A Simple Yet Strong Baseline for LLM-Based Web Agents [52.13695464678006]
本研究は, 観察空間と行動空間を簡略化することで, LLMベースのWebエージェントを強化する。
AgentOccam は以前の最先端および同時処理を 9.8 (+29.4%) と 5.9 (+15.8%) で上回っている。
論文 参考訳(メタデータ) (2024-10-17T17:50:38Z) - AgentHarm: A Benchmark for Measuring Harmfulness of LLM Agents [84.96249955105777]
LLMエージェントは誤用された場合、より大きなリスクを引き起こすが、その堅牢性は未発見のままである。
我々は, LLMエージェント誤用の研究を容易にするために, AgentHarmと呼ばれる新しいベンチマークを提案する。
主要なLLMは、ジェイルブレイクなしで悪意のあるエージェント要求に驚くほど準拠している。
論文 参考訳(メタデータ) (2024-10-11T17:39:22Z) - AgentMonitor: A Plug-and-Play Framework for Predictive and Secure Multi-Agent Systems [43.333567687032904]
AgentMonitorはエージェントレベルで統合されたフレームワークで、インプットとアウトプットをキャプチャし、回帰モデルをトレーニングしてタスクのパフォーマンスを予測する統計に変換する。
さらに、悪意のあるエージェントによるセキュリティリスクに対処し、ネガティブな影響を軽減し、MASセキュリティを強化するために、リアルタイムの修正を適用することができる。
論文 参考訳(メタデータ) (2024-08-27T11:24:38Z) - BadAgent: Inserting and Activating Backdoor Attacks in LLM Agents [26.057916556444333]
提案手法は,BadAgentというバックドア攻撃に対して脆弱であることを示す。
提案手法は信頼性のあるデータを微調整した後でも極めて堅牢である。
論文 参考訳(メタデータ) (2024-06-05T07:14:28Z) - AgentLite: A Lightweight Library for Building and Advancing
Task-Oriented LLM Agent System [91.41155892086252]
LLMエージェントの研究を簡略化する新しいAIエージェントライブラリであるAgentLiteをオープンソースとして公開する。
AgentLiteは、タスクを分解するエージェントの機能を強化するために設計されたタスク指向フレームワークである。
我々は,その利便性と柔軟性を示すために,AgentLiteで開発された実用アプリケーションを紹介した。
論文 参考訳(メタデータ) (2024-02-23T06:25:20Z) - Watch Out for Your Agents! Investigating Backdoor Threats to LLM-Based Agents [47.219047422240145]
我々は、LSMベースのエージェントに対して、典型的な安全脅威であるバックドアアタックの1つを調査する第一歩を踏み出した。
具体的には、ユーザ入力とモデル出力のみを操作できる従来のLDMに対するバックドア攻撃と比較して、エージェントバックドア攻撃はより多様で隠蔽的な形式を示す。
論文 参考訳(メタデータ) (2024-02-17T06:48:45Z) - TrustAgent: Towards Safe and Trustworthy LLM-based Agents [50.33549510615024]
本稿では,エージェント・コンスティチューションをベースとしたエージェント・フレームワークであるTrustAgentについて述べる。
提案枠組みは,計画立案前のモデルに安全知識を注入する事前計画戦略,計画立案時の安全性を高める内計画戦略,計画後検査による安全性を確保する後計画戦略の3つの戦略要素を通じて,エージェント憲法の厳格な遵守を保証する。
論文 参考訳(メタデータ) (2024-02-02T17:26:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。