Benign overfitting in Fixed Dimension via Physics-Informed Learning with Smooth Inductive Bias
- URL: http://arxiv.org/abs/2406.09194v2
- Date: Sun, 16 Jun 2024 17:34:27 GMT
- Title: Benign overfitting in Fixed Dimension via Physics-Informed Learning with Smooth Inductive Bias
- Authors: Honam Wong, Wendao Wu, Fanghui Liu, Yiping Lu,
- Abstract summary: We develop an Sobolev norm learning curve for kernel ridge(less) regression when addressing (elliptical) linear inverse problems.
Our results show that the PDE operators in the inverse problem can stabilize the variance and even behave benign overfitting for fixed-dimensional problems.
- Score: 8.668428992331808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in machine learning have inspired a surge of research into reconstructing specific quantities of interest from measurements that comply with certain physical laws. These efforts focus on inverse problems that are governed by partial differential equations (PDEs). In this work, we develop an asymptotic Sobolev norm learning curve for kernel ridge(less) regression when addressing (elliptical) linear inverse problems. Our results show that the PDE operators in the inverse problem can stabilize the variance and even behave benign overfitting for fixed-dimensional problems, exhibiting different behaviors from regression problems. Besides, our investigation also demonstrates the impact of various inductive biases introduced by minimizing different Sobolev norms as a form of implicit regularization. For the regularized least squares estimator, we find that all considered inductive biases can achieve the optimal convergence rate, provided the regularization parameter is appropriately chosen. The convergence rate is actually independent to the choice of (smooth enough) inductive bias for both ridge and ridgeless regression. Surprisingly, our smoothness requirement recovered the condition found in Bayesian setting and extend the conclusion to the minimum norm interpolation estimators.
Related papers
- Linear causal disentanglement via higher-order cumulants [0.0]
We study the identifiability of linear causal disentanglement, assuming access to data under multiple contexts.
We show that one perfect intervention on each latent variable is sufficient and in the worst case necessary to recover parameters under perfect interventions.
arXiv Detail & Related papers (2024-07-05T15:53:16Z) - High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization [83.06112052443233]
This paper studies kernel ridge regression in high dimensions under covariate shifts.
By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance.
For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales.
arXiv Detail & Related papers (2024-06-05T12:03:27Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Stochastic Langevin Differential Inclusions with Applications to Machine Learning [5.274477003588407]
We show some foundational results regarding the flow and properties of Langevin-type Differential Inclusions.
In particular, we show strong existence of the solution, as well as an canonical- minimization of the free-energy functional.
arXiv Detail & Related papers (2022-06-23T08:29:17Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Error Bounds of the Invariant Statistics in Machine Learning of Ergodic
It\^o Diffusions [8.627408356707525]
We study the theoretical underpinnings of machine learning of ergodic Ito diffusions.
We deduce a linear dependence of the errors of one-point and two-point invariant statistics on the error in the learning of the drift and diffusion coefficients.
arXiv Detail & Related papers (2021-05-21T02:55:59Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Double Trouble in Double Descent : Bias and Variance(s) in the Lazy
Regime [32.65347128465841]
Deep neural networks can achieve remarkable performances while interpolating the training data perfectly.
Rather than the U-curve of the bias-variance trade-off, their test error often follows a "double descent"
We develop a quantitative theory for this phenomenon in the so-called lazy learning regime of neural networks.
arXiv Detail & Related papers (2020-03-02T17:39:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.