Asymptotics of Linear Regression with Linearly Dependent Data
- URL: http://arxiv.org/abs/2412.03702v2
- Date: Sat, 07 Dec 2024 21:32:39 GMT
- Title: Asymptotics of Linear Regression with Linearly Dependent Data
- Authors: Behrad Moniri, Hamed Hassani,
- Abstract summary: We study the computations of linear regression in settings with non-Gaussian covariates.
We show how dependencies influence estimation error and the choice of regularization parameters.
- Score: 28.005935031887038
- License:
- Abstract: In this paper we study the asymptotics of linear regression in settings with non-Gaussian covariates where the covariates exhibit a linear dependency structure, departing from the standard assumption of independence. We model the covariates using stochastic processes with spatio-temporal covariance and analyze the performance of ridge regression in the high-dimensional proportional regime, where the number of samples and feature dimensions grow proportionally. A Gaussian universality theorem is proven, demonstrating that the asymptotics are invariant under replacing the non-Gaussian covariates with Gaussian vectors preserving mean and covariance, for which tools from random matrix theory can be used to derive precise characterizations of the estimation error. The estimation error is characterized by a fixed-point equation involving the spectral properties of the spatio-temporal covariance matrices, enabling efficient computation. We then study optimal regularization, overparameterization, and the double descent phenomenon in the context of dependent data. Simulations validate our theoretical predictions, shedding light on how dependencies influence estimation error and the choice of regularization parameters.
Related papers
- Debiased Nonparametric Regression for Statistical Inference and Distributionally Robustness [10.470114319701576]
We introduce a model-free debiasing method for smooth nonparametric estimators derived from any nonparametric regression approach.
We obtain a debiased estimator with proven pointwise normality and uniform convergence.
arXiv Detail & Related papers (2024-12-28T15:01:19Z) - Statistical Inference in Classification of High-dimensional Gaussian Mixture [1.2354076490479515]
We investigate the behavior of a general class of regularized convex classifiers in the high-dimensional limit.
Our focus is on the generalization error and variable selection properties of the estimators.
arXiv Detail & Related papers (2024-10-25T19:58:36Z) - High-Dimensional Kernel Methods under Covariate Shift: Data-Dependent Implicit Regularization [83.06112052443233]
This paper studies kernel ridge regression in high dimensions under covariate shifts.
By a bias-variance decomposition, we theoretically demonstrate that the re-weighting strategy allows for decreasing the variance.
For bias, we analyze the regularization of the arbitrary or well-chosen scale, showing that the bias can behave very differently under different regularization scales.
arXiv Detail & Related papers (2024-06-05T12:03:27Z) - Convex Parameter Estimation of Perturbed Multivariate Generalized
Gaussian Distributions [18.95928707619676]
We propose a convex formulation with well-established properties for MGGD parameters.
The proposed framework is flexible as it combines a variety of regularizations for the precision matrix, the mean and perturbations.
Experiments show a more accurate precision and covariance matrix estimation with similar performance for the mean vector parameter.
arXiv Detail & Related papers (2023-12-12T18:08:04Z) - High-dimensional analysis of double descent for linear regression with
random projections [0.0]
We consider linear regression problems with a varying number of random projections, where we provably exhibit a double descent curve for a fixed prediction problem.
We first consider the ridge regression estimator and re-interpret earlier results using classical notions from non-parametric statistics.
We then compute equivalents of the generalization performance (in terms of bias and variance) of the minimum norm least-squares fit with random projections, providing simple expressions for the double descent phenomenon.
arXiv Detail & Related papers (2023-03-02T15:58:09Z) - On the Double Descent of Random Features Models Trained with SGD [78.0918823643911]
We study properties of random features (RF) regression in high dimensions optimized by gradient descent (SGD)
We derive precise non-asymptotic error bounds of RF regression under both constant and adaptive step-size SGD setting.
We observe the double descent phenomenon both theoretically and empirically.
arXiv Detail & Related papers (2021-10-13T17:47:39Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
We consider the task of heavy-tailed statistical estimation given streaming $p$ samples.
We design a clipped gradient descent and provide an improved analysis under a more nuanced condition on the noise of gradients.
arXiv Detail & Related papers (2021-08-25T21:30:27Z) - Error Bounds of the Invariant Statistics in Machine Learning of Ergodic
It\^o Diffusions [8.627408356707525]
We study the theoretical underpinnings of machine learning of ergodic Ito diffusions.
We deduce a linear dependence of the errors of one-point and two-point invariant statistics on the error in the learning of the drift and diffusion coefficients.
arXiv Detail & Related papers (2021-05-21T02:55:59Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.