ReadCtrl: Personalizing text generation with readability-controlled instruction learning
- URL: http://arxiv.org/abs/2406.09205v1
- Date: Thu, 13 Jun 2024 15:03:46 GMT
- Title: ReadCtrl: Personalizing text generation with readability-controlled instruction learning
- Authors: Hieu Tran, Zonghai Yao, Lingxi Li, Hong Yu,
- Abstract summary: "Readability-Controlled Instruction Learning (ReadCtrl)" aims to instruction-tune large language models (LLMs) to tailor users' readability levels.
Our results show that the ReadCtrl-Mistral-7B models significantly outperformed strong baseline models such as GPT-4 and Claude-3.
These results underscore Read-Ctrl's effectiveness and tenacity in producing high-quality, contextually appropriate outputs.
- Score: 12.493713890977943
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Content generation conditioning on users's readability is an important application for personalization. In an era of large language models (LLMs), readability-controlled text generation based on LLMs has become increasingly important. This paper introduces a novel methodology called "Readability-Controlled Instruction Learning (ReadCtrl)," which aims to instruction-tune LLMs to tailor users' readability levels. Unlike the traditional methods, which primarily focused on categorical readability adjustments typically classified as high, medium, and low or expert and layperson levels with limited success, ReadCtrl introduces a dynamic framework that enables LLMs to generate content at various (near continuous level) complexity levels, thereby enhancing their versatility across different applications. Our results show that the ReadCtrl-Mistral-7B models significantly outperformed strong baseline models such as GPT-4 and Claude-3, with a win rate of 52.1%:35.7% against GPT-4 in human evaluations. Furthermore, Read-Ctrl has shown significant improvements in automatic evaluations, as evidenced by better readability metrics (e.g., FOG, FKGL) and generation quality metrics (e.g., BLEU, SARI, SummaC-Factuality, UniEval-Consistency and Coherence). These results underscore Read-Ctrl's effectiveness and tenacity in producing high-quality, contextually appropriate outputs that closely align with targeted readability levels, marking a significant advancement in personalized content generation using LLMs.
Related papers
- Training LLMs for Generating IEC 61131-3 Structured Text with Online Feedback [0.0]
This paper proposes a novel approach to training large language models (LLMs) that emphasizes improving the quality of learning data.
The framework proves highly suitable for industrial automation applications and outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-10-29T15:54:09Z) - SAG: Style-Aligned Article Generation via Model Collaboration [6.5673543772901475]
Large language models (LLMs) have increased the demand for personalized and stylish content generation.
We present a novel collaborative training framework that leverages the strengths of both LLMs and SLMs for style article generation.
Our approach achieves state-of-the-art performance, with improvements of 0.78 in ROUGE-L and 0.55 in BLEU-4 scores compared to GPT-4.
arXiv Detail & Related papers (2024-10-04T04:24:42Z) - Adaptable Logical Control for Large Language Models [68.27725600175013]
Ctrl-G is an adaptable framework that facilitates tractable and flexible control of model generation at inference time.
We show that Ctrl-G, when applied to a TULU2-7B model, outperforms GPT3.5 and GPT4 on the task of interactive text editing.
arXiv Detail & Related papers (2024-06-19T23:47:59Z) - Supportiveness-based Knowledge Rewriting for Retrieval-augmented Language Modeling [65.72918416258219]
Supportiveness-based Knowledge Rewriting (SKR) is a robust and pluggable knowledge rewriter inherently optimized for LLM generation.
Based on knowledge supportiveness, we first design a training data curation strategy for our rewriter model.
We then introduce the direct preference optimization (DPO) algorithm to align the generated rewrites to optimal supportiveness.
arXiv Detail & Related papers (2024-06-12T11:52:35Z) - LLMEmbed: Rethinking Lightweight LLM's Genuine Function in Text Classification [13.319594321038926]
We propose a simple and effective transfer learning strategy, namely LLMEmbed, to address this classical but challenging task.
We perform extensive experiments on publicly available datasets, and the results show that LLMEmbed achieves strong performance while enjoys low training overhead.
arXiv Detail & Related papers (2024-06-06T03:46:59Z) - Enhancing Reinforcement Learning with Label-Sensitive Reward for Natural Language Understanding [11.470005425117371]
We propose a novel Reinforcement Learning framework enhanced with Label-sensitive Reward (RLLR)
Our method aims to adeptly capture nuanced label-sensitive semantic features during RL, thereby enhancing natural language understanding.
Experiments conducted on five diverse foundation models across eight tasks showcase promising results.
arXiv Detail & Related papers (2024-05-30T07:19:31Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
Reinforcement learning (RL) has become the de facto standard practice for sequential decision-making problems by improving future acting policies with feedback.
Recent developments in large language models (LLMs) have showcased impressive capabilities in language understanding and generation, yet they fall short in exploration and self-improvement capabilities.
We develop an algorithm named LINVIT that incorporates LLM guidance as a regularization factor in value-based RL, leading to significant reductions in the amount of data needed for learning.
arXiv Detail & Related papers (2024-02-25T20:07:13Z) - Large Language Models can Contrastively Refine their Generation for Better Sentence Representation Learning [57.74233319453229]
Large language models (LLMs) have emerged as a groundbreaking technology and their unparalleled text generation capabilities have sparked interest in their application to the fundamental sentence representation learning task.
We propose MultiCSR, a multi-level contrastive sentence representation learning framework that decomposes the process of prompting LLMs to generate a corpus.
Our experiments reveal that MultiCSR enables a less advanced LLM to surpass the performance of ChatGPT, while applying it to ChatGPT achieves better state-of-the-art results.
arXiv Detail & Related papers (2023-10-17T03:21:43Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - Language Model Self-improvement by Reinforcement Learning Contemplation [13.152789365858812]
This paper introduces a novel unsupervised method called LanguageModel Self-Improvement by Reinforcement Learning Contemplation (SIRLC)
As a student, the model generates answers to unlabeled questions, while as a teacher, it evaluates the generated text and assigns scores accordingly.
We demonstrate that SIRLC can be applied to various NLP tasks, such as reasoning problems, text generation, and machine translation.
arXiv Detail & Related papers (2023-05-23T19:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.