Parameter-Efficient Active Learning for Foundational models
- URL: http://arxiv.org/abs/2406.09296v2
- Date: Fri, 14 Jun 2024 04:40:09 GMT
- Title: Parameter-Efficient Active Learning for Foundational models
- Authors: Athmanarayanan Lakshmi Narayanan, Ranganath Krishnan, Amrutha Machireddy, Mahesh Subedar,
- Abstract summary: Foundational vision transformer models have shown impressive few shot performance on many vision tasks.
This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework.
- Score: 7.799711162530711
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Foundational vision transformer models have shown impressive few shot performance on many vision tasks. This research presents a novel investigation into the application of parameter efficient fine-tuning methods within an active learning (AL) framework, to advance the sampling selection process in extremely budget constrained classification tasks. The focus on image datasets, known for their out-of-distribution characteristics, adds a layer of complexity and relevance to our study. Through a detailed evaluation, we illustrate the improved AL performance on these challenging datasets, highlighting the strategic advantage of merging parameter efficient fine tuning methods with foundation models. This contributes to the broader discourse on optimizing AL strategies, presenting a promising avenue for future exploration in leveraging foundation models for efficient and effective data annotation in specialized domains.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Adaptive Masking Enhances Visual Grounding [12.793586888511978]
We propose IMAGE, Interpretative MAsking with Gaussian radiation modEling, to enhance vocabulary grounding in low-shot learning scenarios.
We evaluate the efficacy of our approach on benchmark datasets, including COCO and ODinW, demonstrating its superior performance in zero-shot and few-shot tasks.
arXiv Detail & Related papers (2024-10-04T05:48:02Z) - A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Learning Semantic Proxies from Visual Prompts for Parameter-Efficient Fine-Tuning in Deep Metric Learning [13.964106147449051]
Existing solutions concentrate on fine-tuning the pre-trained models on conventional image datasets.
We propose a novel and effective framework based on learning Visual Prompts (VPT) in the pre-trained Vision Transformers (ViT)
We demonstrate that our new approximations with semantic information are superior to representative capabilities.
arXiv Detail & Related papers (2024-02-04T04:42:05Z) - Mean-AP Guided Reinforced Active Learning for Object Detection [31.304039641225504]
This paper introduces Mean-AP Guided Reinforced Active Learning for Object Detection (MGRAL)
MGRAL is a novel approach that leverages the concept of expected model output changes as informativeness for deep detection networks.
Our approach demonstrates strong performance, establishing a new paradigm in reinforcement learning-based active learning for object detection.
arXiv Detail & Related papers (2023-10-12T14:59:22Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Consolidated learning -- a domain-specific model-free optimization
strategy with examples for XGBoost and MIMIC-IV [4.370097023410272]
This paper proposes a new formulation of the tuning problem, called consolidated learning.
In such settings, we are interested in the total optimization time rather than tuning for a single task.
We demonstrate the effectiveness of this approach through an empirical study for XGBoost algorithm and the collection of predictive tasks extracted from the MIMIC-IV medical database.
arXiv Detail & Related papers (2022-01-27T21:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.