Advancing Graph Generation through Beta Diffusion
- URL: http://arxiv.org/abs/2406.09357v1
- Date: Thu, 13 Jun 2024 17:42:57 GMT
- Title: Advancing Graph Generation through Beta Diffusion
- Authors: Yilin He, Xinyang Liu, Bo Chen, Mingyuan Zhou,
- Abstract summary: Graph Beta Diffusion (GBD) is a diffusion-based generative model adept at capturing diverse graph structures.
We have developed a modulation technique that enhances the realism of the generated graphs by stabilizing the generation of critical graph structures.
- Score: 49.49740940068255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have demonstrated effectiveness in generating natural images and have been extended to generate diverse data types, including graphs. This new generation of diffusion-based graph generative models has demonstrated significant performance improvements over methods that rely on variational autoencoders or generative adversarial networks. It's important to recognize, however, that most of these models employ Gaussian or categorical diffusion processes, which can struggle with sparse and long-tailed data distributions. In our work, we introduce Graph Beta Diffusion (GBD), a diffusion-based generative model particularly adept at capturing diverse graph structures. GBD utilizes a beta diffusion process, tailored for the sparse and range-bounded characteristics of graph adjacency matrices. Furthermore, we have developed a modulation technique that enhances the realism of the generated graphs by stabilizing the generation of critical graph structures, while preserving flexibility elsewhere. The outstanding performance of GBD across three general graph benchmarks and two biochemical graph benchmarks highlights its capability to effectively capture the complexities of real-world graph data. The code will be made available at https://github.com/YH-UtMSB/Graph_Beta_Diffusion
Related papers
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
We introduce the Neural Graph Generator (NGG), a novel approach which utilizes conditioned latent diffusion models for graph generation.
NGG demonstrates a remarkable capacity to model complex graph patterns, offering control over the graph generation process.
arXiv Detail & Related papers (2024-03-03T15:28:47Z) - Advective Diffusion Transformers for Topological Generalization in Graph
Learning [69.2894350228753]
We show how graph diffusion equations extrapolate and generalize in the presence of varying graph topologies.
We propose a novel graph encoder backbone, Advective Diffusion Transformer (ADiT), inspired by advective graph diffusion equations.
arXiv Detail & Related papers (2023-10-10T08:40:47Z) - GraphGUIDE: interpretable and controllable conditional graph generation
with discrete Bernoulli diffusion [0.8602553195689513]
Diffusion models achieve state-of-the-art performance in generating realistic objects.
Recent work has shown that diffusion can also be defined on graphs, including graph representations of drug-like molecules.
We propose GraphGUIDE, a novel framework for graph generation using diffusion models.
arXiv Detail & Related papers (2023-02-07T22:58:29Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
We propose a Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation.
Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through differential equations (SDE)
We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states.
arXiv Detail & Related papers (2023-01-01T15:24:15Z) - GraphGDP: Generative Diffusion Processes for Permutation Invariant Graph
Generation [43.196067037856515]
Graph generative models have broad applications in biology, chemistry and social science.
Current leading autoregressive models fail to capture the permutation invariance nature of graphs.
We propose a continuous-time generative diffusion process for permutation invariant graph generation.
arXiv Detail & Related papers (2022-12-04T15:12:44Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.