論文の概要: A More Practical Approach to Machine Unlearning
- arxiv url: http://arxiv.org/abs/2406.09391v1
- Date: Thu, 13 Jun 2024 17:59:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-14 16:06:12.817070
- Title: A More Practical Approach to Machine Unlearning
- Title(参考訳): 機械学習へのより実践的なアプローチ
- Authors: David Zagardo,
- Abstract要約: 機械学習は、訓練されたモデルから特定のデータポイントの影響を取り除く能力である。
GPT-2の埋め込み層は効果的なアンラーニングに不可欠である。
ファジィマッチング技術はモデルを新しい最適に移行し、反復的アンラーニングはより完全なモダリティを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine learning models often incorporate vast amounts of data, raising significant privacy concerns. Machine unlearning, the ability to remove the influence of specific data points from a trained model, addresses these concerns. This paper explores practical methods for implementing machine unlearning, focusing on a first-epoch gradient-ascent approach. Key findings include: 1. Single vs. Multi-Epoch Unlearning: First-epoch gradient unlearning is more effective than multi-epoch gradients. 2. Layer-Based Unlearning: The embedding layer in GPT-2 is crucial for effective unlearning. Gradients from the output layers (11 and 12) have no impact. Efficient unlearning can be achieved using only the embedding layer, halving space complexity. 3. Influence Functions & Scoring: Techniques like Hessian Vector Product and the dot product of activations and tensors are used for quantifying unlearning. 4. Gradient Ascent Considerations: Calibration is necessary to avoid overexposing the model to specific data points during unlearning, which could prematurely terminate the process. 5. Fuzzy Matching vs. Iterative Unlearning: Fuzzy matching techniques shift the model to a new optimum, while iterative unlearning provides a more complete modality. Our empirical evaluation confirms that first-epoch gradient ascent for machine unlearning is more effective than whole-model gradient ascent. These results highlight the potential of machine unlearning for enhancing data privacy and compliance with regulations such as GDPR and CCPA. The study underscores the importance of formal methods to comprehensively evaluate the unlearning process.
- Abstract(参考訳): 機械学習モデルは、しばしば大量のデータを取り込み、重要なプライバシー上の懸念を引き起こす。
機械学習 — トレーニングされたモデルから特定のデータポイントの影響を取り除く能力 — は、これらの懸念に対処する。
本稿では,機械学習を実践するための実践的手法について考察する。
主な発見は以下のとおりである。
1. シングル対マルチエポック・アンラーニング: ファーストエポック・グラデーション・アンラーニングはマルチエポック・グラデーションよりも効果的である。
2. 層ベースアンラーニング: GPT-2 への埋め込み層は効果的なアンラーニングに不可欠である。
出力層(11,12)からの勾配は影響を受けない。
効率的なアンラーニングは埋め込み層だけで実現でき、空間の複雑さを半減させる。
3. 影響関数と Scoring: ヘッセンベクトル製品やアクティベーションの点積、テンソルといったテクニックは、未学習の定量化に使用される。
4. 漸進的漸進的考察: 未学習中にモデルを特定のデータポイントに過度に抽出しないように校正する必要がある。
5. ファジィマッチング vs. イテレーティブアンラーニング: ファジィマッチング技術はモデルを新しい最適なものにし、イテレーティブアンラーニングはより完全なモダリティを提供する。
実験により,機械学習における初等的勾配上昇は,モデル全体の勾配上昇よりも有効であることが確認された。
これらの結果は、データプライバシの強化とGDPRやCCPAなどの規制の遵守のための機械学習の可能性を強調している。
この研究は、学習過程を包括的に評価する形式的手法の重要性を浮き彫りにした。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [49.043599241803825]
Iterative Contrastive Unlearning (ICU)フレームワークは3つのコアコンポーネントで構成されている。
知識未学習誘導モジュールは、未学習の損失を通じて特定の知識を除去する。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を維持する。
また、特定のデータ片の未学習範囲を動的に評価し、反復的な更新を行う反復未学習リファインメントモジュールも用意されている。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Alignment Calibration: Machine Unlearning for Contrastive Learning under Auditing [33.418062986773606]
まず,Machine Unlearning for Contrastive Learning (MUC) の枠組みを提案し,既存の手法を適用した。
我々は,いくつかの手法が未学習者であり,既存の監査ツールがデータ所有者にとって,対照的な学習における未学習の効果を検証するのに十分でないことを観察した。
コントラスト学習の特性を明示的に考慮し,未学習を容易に検証するための新しい指標に最適化することで,アライメント(AC)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-06-05T19:55:45Z) - Efficient Knowledge Deletion from Trained Models through Layer-wise
Partial Machine Unlearning [2.3496568239538083]
本稿では,機械学習アルゴリズムの新たなクラスを紹介する。
第1の方法は、アンネシアック・アンラーニングであり、アンネシアック・アンラーニングとレイヤーワイズ・プルーニングの統合である。
第2の方法は、階層的な部分更新をラベルフリップと最適化に基づくアンラーニングに同化する。
論文 参考訳(メタデータ) (2024-03-12T12:49:47Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Unlearn What You Want to Forget: Efficient Unlearning for LLMs [92.51670143929056]
大規模言語モデル(LLM)は、幅広いテキストデータを事前学習し記憶することで大きな進歩を遂げた。
このプロセスはプライバシー問題やデータ保護規則違反に悩まされる可能性がある。
データ削除後のモデル全体を再トレーニングすることなく、LLMを効率的に更新できる効率的なアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T03:35:59Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
本稿では,PILOTとして知られるモデルベース連続学習ツールボックスについて紹介する。
一方、PILOTはL2P、DualPrompt、CODA-Promptといった事前学習モデルに基づいて、最先端のクラスインクリメンタル学習アルゴリズムを実装している。
一方、PILOTは、事前学習されたモデルの文脈に典型的なクラス増分学習アルゴリズムを適合させ、それらの効果を評価する。
論文 参考訳(メタデータ) (2023-09-13T17:55:11Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
最近のデータ規制要件に応えて、マシン・アンラーニング(MU)が重要なプロセスとして登場した。
本研究は,ウェイトプルーニングによるモデルスペーシフィケーションという,新しいモデルベース視点を紹介する。
理論と実践の両方において、モデルスパーシティは、近似アンラーナーのマルチ基準アンラーニング性能を高めることができることを示す。
論文 参考訳(メタデータ) (2023-04-11T02:12:02Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。