Topologically Robust Quantum Network Nonlocality
- URL: http://arxiv.org/abs/2406.09510v1
- Date: Thu, 13 Jun 2024 18:01:50 GMT
- Title: Topologically Robust Quantum Network Nonlocality
- Authors: Sadra Boreiri, Tamas Krivachy, Pavel Sekatski, Antoine Girardin, Nicolas Brunner,
- Abstract summary: We discuss quantum network Bell nonlocality in a setting where the network structure is not fully known.
In particular, we show that in a large ring network, the knowledge of only a small part of the network structure is enough to guarantee nonlocality over the entire network.
This shows that quantum network nonlocality can be extremely robust to changes in the network topology.
- Score: 0.41942958779358674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss quantum network Bell nonlocality in a setting where the network structure is not fully known. More concretely, an honest user may trust their local network topology, but not the structure of the rest of the network, involving distant (and potentially dishonest) parties. We demonstrate that quantum network nonlocality can still be demonstrated in such a setting, hence exhibiting topological robustness. Specifically, we present quantum distributions obtained from a simple network that cannot be reproduced by classical models, even when the latter are based on more powerful networks. In particular, we show that in a large ring network, the knowledge of only a small part of the network structure (involving only 2 or 3 neighbouring parties) is enough to guarantee nonlocality over the entire network. This shows that quantum network nonlocality can be extremely robust to changes in the network topology. Moreover, we demonstrate that applications of quantum nonlocality, such as the black-box certification of randomness and entanglement, are also possible in such a setting.
Related papers
- Measurement dependence can enhance security in a quantum network [0.0]
Quantum networks have the potential to bring a lot of technological applications in sevaral quantum information processing tasks.
Here, we are focusing on how the role of the independence of the measurement choices of the end parties in a network works and can be used to enhance the security in a quantum network.
arXiv Detail & Related papers (2024-05-20T21:19:18Z) - Guarantees on the structure of experimental quantum networks [105.13377158844727]
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing.
As these networks grow in size, certification tools will be required to answer questions regarding their properties.
We demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network.
arXiv Detail & Related papers (2024-03-04T19:00:00Z) - Quantum-Inspired Analysis of Neural Network Vulnerabilities: The Role of
Conjugate Variables in System Attacks [54.565579874913816]
Neural networks demonstrate inherent vulnerability to small, non-random perturbations, emerging as adversarial attacks.
A mathematical congruence manifests between this mechanism and the quantum physics' uncertainty principle, casting light on a hitherto unanticipated interdisciplinarity.
arXiv Detail & Related papers (2024-02-16T02:11:27Z) - Detection of Network and Genuine Network Quantum Steering [7.871322835493703]
We show that our criteria can detect more quantum network steering than that from the violation of the n-locality quantum networks.
It is shown that biseparable assemblages can demonstrate genuine network steering in the star network configurations.
arXiv Detail & Related papers (2023-12-10T05:29:52Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - Hierarchical certification of nonclassical network correlations [50.32788626697182]
We derive linear and nonlinear Bell-like inequalities for networks, whose violation certifies the absence of a minimum number of classical sources in them.
We insert this assumption, which leads to results more amenable to certification in experiments.
arXiv Detail & Related papers (2023-06-27T18:00:01Z) - Certification of non-classicality in all links of a photonic star
network without assuming quantum mechanics [52.95080735625503]
Full network nonlocality goes beyond standard nonlocality in networks by falsifying any model in which at least one source is classical.
We report on the observation of full network nonlocality in a star-shaped network featuring three independent sources of photonic qubits and joint three-qubit entanglement-swapping measurements.
arXiv Detail & Related papers (2022-12-19T19:00:01Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z) - Genuine network quantum nonlocality and self-testing [0.0]
We define a notion of genuine network quantum nonlocality.
We show several examples of correlations that are genuine network nonlocal.
In particular, we present an example of quantum self-testing which relies on the network structure.
arXiv Detail & Related papers (2021-05-26T06:05:22Z) - Full network nonlocality [68.8204255655161]
We introduce the concept of full network nonlocality, which describes correlations that necessitate all links in a network to distribute nonlocal resources.
We show that the most well-known network Bell test does not witness full network nonlocality.
More generally, we point out that established methods for analysing local and theory-independent correlations in networks can be combined in order to deduce sufficient conditions for full network nonlocality.
arXiv Detail & Related papers (2021-05-19T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.