Between Randomness and Arbitrariness: Some Lessons for Reliable Machine Learning at Scale
- URL: http://arxiv.org/abs/2406.09548v2
- Date: Mon, 12 Aug 2024 08:02:06 GMT
- Title: Between Randomness and Arbitrariness: Some Lessons for Reliable Machine Learning at Scale
- Authors: A. Feder Cooper,
- Abstract summary: dissertation: quantifying and mitigating sources of arbitiness in ML, randomness in uncertainty estimation and optimization algorithms, in order to achieve scalability without sacrificing reliability.
dissertation serves as an empirical proof by example that research on reliable measurement for machine learning is intimately bound up with research in law and policy.
- Score: 2.50194939587674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To develop rigorous knowledge about ML models -- and the systems in which they are embedded -- we need reliable measurements. But reliable measurement is fundamentally challenging, and touches on issues of reproducibility, scalability, uncertainty quantification, epistemology, and more. This dissertation addresses criteria needed to take reliability seriously: both criteria for designing meaningful metrics, and for methodologies that ensure that we can dependably and efficiently measure these metrics at scale and in practice. In doing so, this dissertation articulates a research vision for a new field of scholarship at the intersection of machine learning, law, and policy. Within this frame, we cover topics that fit under three different themes: (1) quantifying and mitigating sources of arbitrariness in ML, (2) taming randomness in uncertainty estimation and optimization algorithms, in order to achieve scalability without sacrificing reliability, and (3) providing methods for evaluating generative-AI systems, with specific focuses on quantifying memorization in language models and training latent diffusion models on open-licensed data. By making contributions in these three themes, this dissertation serves as an empirical proof by example that research on reliable measurement for machine learning is intimately and inescapably bound up with research in law and policy. These different disciplines pose similar research questions about reliable measurement in machine learning. They are, in fact, two complementary sides of the same research vision, which, broadly construed, aims to construct machine-learning systems that cohere with broader societal values.
Related papers
- SMLE: Safe Machine Learning via Embedded Overapproximation [4.129133569151574]
We consider the task of training differentiable ML models guaranteed to satisfy designer-chosen properties.
This is very challenging, due to the computational complexity of rigorously verifying and enforcing compliance in modern neural models.
We provide an innovative approach based on three components: 1) a general, simple architecture enabling efficient verification with a conservative semantic.
We evaluate our approach on properties defined by linear inequalities in regression, and on mutually exclusive classes in multilabel classification.
arXiv Detail & Related papers (2024-09-30T17:19:57Z) - Networks of Networks: Complexity Class Principles Applied to Compound AI Systems Design [63.24275274981911]
Compound AI Systems consisting of many language model inference calls are increasingly employed.
In this work, we construct systems, which we call Networks of Networks (NoNs) organized around the distinction between generating a proposed answer and verifying its correctness.
We introduce a verifier-based judge NoN with K generators, an instantiation of "best-of-K" or "judge-based" compound AI systems.
arXiv Detail & Related papers (2024-07-23T20:40:37Z) - Benchmarks as Microscopes: A Call for Model Metrology [76.64402390208576]
Modern language models (LMs) pose a new challenge in capability assessment.
To be confident in our metrics, we need a new discipline of model metrology.
arXiv Detail & Related papers (2024-07-22T17:52:12Z) - Machine Learning Robustness: A Primer [12.426425119438846]
The discussion begins with a detailed definition of robustness, portraying it as the ability of ML models to maintain stable performance across varied and unexpected environmental conditions.
The chapter delves into the factors that impede robustness, such as data bias, model complexity, and the pitfalls of underspecified ML pipelines.
The discussion progresses to explore amelioration strategies for bolstering robustness, starting with data-centric approaches like debiasing and augmentation.
arXiv Detail & Related papers (2024-04-01T03:49:42Z) - Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection [0.0]
We consider real-world problems arising in aviation and other safety-critical areas, and investigate their requirements for a certified model.
We establish a new framework towards deep learning certification based on (i) inherently safe design, and (ii) run-time error detection.
arXiv Detail & Related papers (2024-03-12T11:38:45Z) - A Holistic Assessment of the Reliability of Machine Learning Systems [30.638615396429536]
This paper proposes a holistic assessment methodology for the reliability of machine learning (ML) systems.
Our framework evaluates five key properties: in-distribution accuracy, distribution-shift robustness, adversarial robustness, calibration, and out-of-distribution detection.
To provide insights into the performance of different algorithmic approaches, we identify and categorize state-of-the-art techniques.
arXiv Detail & Related papers (2023-07-20T05:00:13Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
"Lifelong Learning" systems are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability.
We show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems.
arXiv Detail & Related papers (2023-01-18T21:58:54Z) - Truthful Meta-Explanations for Local Interpretability of Machine
Learning Models [10.342433824178825]
We present a local meta-explanation technique which builds on top of the truthfulness metric, which is a faithfulness-based metric.
We demonstrate the effectiveness of both the technique and the metric by concretely defining all the concepts and through experimentation.
arXiv Detail & Related papers (2022-12-07T08:32:04Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
We explore the use of historical expert decisions as a rich source of information that can be combined with observed outcomes to narrow the construct gap.
We propose an influence function-based methodology to estimate expert consistency indirectly when each case in the data is assessed by a single expert.
Our empirical evaluation, using simulations in a clinical setting and real-world data from the child welfare domain, indicates that the proposed approach successfully narrows the construct gap.
arXiv Detail & Related papers (2021-01-24T05:40:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.